These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 36760077)

  • 21. Resistance exercise and nutrition to counteract muscle wasting.
    Little JP; Phillips SM
    Appl Physiol Nutr Metab; 2009 Oct; 34(5):817-28. PubMed ID: 19935843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling.
    Padrão AI; Figueira AC; Faustino-Rocha AI; Gama A; Loureiro MM; Neuparth MJ; Moreira-Gonçalves D; Vitorino R; Amado F; Santos LL; Oliveira PA; Duarte JA; Ferreira R
    Acta Physiol (Oxf); 2017 Apr; 219(4):803-813. PubMed ID: 27228549
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects).
    Phillips SM
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):403-10. PubMed ID: 19448706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Review of muscle wasting associated with chronic kidney disease.
    Workeneh BT; Mitch WE
    Am J Clin Nutr; 2010 Apr; 91(4):1128S-1132S. PubMed ID: 20181807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Mitochondrial Stress in Muscle Wasting Following Severe Burn Trauma.
    Ogunbileje JO; Herndon DN; Murton AJ; Porter C
    J Burn Care Res; 2018 Jan; 39(1):100-108. PubMed ID: 28448295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphodiesterase 4B knockout prevents skeletal muscle atrophy in rats with burn injury.
    Balasubramaniam A; Sheriff S; Friend LA; James JH
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R429-R433. PubMed ID: 29693432
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 29. Cancer-Mediated Muscle Cachexia: Etiology and Clinical Management.
    Siff T; Parajuli P; Razzaque MS; Atfi A
    Trends Endocrinol Metab; 2021 Jun; 32(6):382-402. PubMed ID: 33888422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury.
    Ma L; Chu W; Chai J; Shen C; Li D; Wang X
    PLoS One; 2017; 12(10):e0186128. PubMed ID: 29028830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powerful signals for weak muscles.
    Saini A; Faulkner S; Al-Shanti N; Stewart C
    Ageing Res Rev; 2009 Oct; 8(4):251-67. PubMed ID: 19716529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heart Failure-Induced Skeletal Muscle Wasting.
    Philippou A; Xanthis D; Chryssanthopοulos C; Maridaki M; Koutsilieris M
    Curr Heart Fail Rep; 2020 Oct; 17(5):299-308. PubMed ID: 32743732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pre-cachexia in patients with stages I-III non-small cell lung cancer: systemic inflammation and functional impairment without activation of skeletal muscle ubiquitin proteasome system.
    Op den Kamp CM; Langen RC; Minnaard R; Kelders MC; Snepvangers FJ; Hesselink MK; Dingemans AC; Schols AM
    Lung Cancer; 2012 Apr; 76(1):112-7. PubMed ID: 22018880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation.
    Daou HN
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R296-R310. PubMed ID: 31823669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal Muscle Loss is Associated with TNF Mediated Insufficient Skeletal Myogenic Activation After Burn.
    Song J; Saeman MR; De Libero J; Wolf SE
    Shock; 2015 Nov; 44(5):479-86. PubMed ID: 26196842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscle Homeostasis Is Disrupted in Burned Adults.
    Clark AT; Song J; Yao X; Carlson D; Huebinger RM; Mei Liu M; Madni TD; Imran JB; Taveras LR; Weis HB; Arnoldo BD; Phelan HA; Wolf SE
    J Burn Care Res; 2020 Jan; 41(1):33-40. PubMed ID: 31738430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle.
    Ferreira RP; Duarte JA
    Int J Sports Med; 2023 Oct; 44(11):763-777. PubMed ID: 36854391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of muscle disuse on muscle atrophy in severely burned rats.
    Wu X; Baer LA; Wolf SE; Wade CE; Walters TJ
    J Surg Res; 2010 Dec; 164(2):e243-51. PubMed ID: 20888588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.