These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 36760077)

  • 41. The impact of muscle disuse on muscle atrophy in severely burned rats.
    Wu X; Baer LA; Wolf SE; Wade CE; Walters TJ
    J Surg Res; 2010 Dec; 164(2):e243-51. PubMed ID: 20888588
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Erythropoietin Alleviates Burn-induced Muscle Wasting.
    Wu SH; Lu IC; Tai MH; Chai CY; Kwan AL; Huang SH
    Int J Med Sci; 2020; 17(1):33-44. PubMed ID: 31929736
    [No Abstract]   [Full Text] [Related]  

  • 43. Skeletal muscle wasting after burn is regulated by a decrease in anabolic signaling in the early flow phase.
    Dombrecht D; Van Daele U; Van Asbroeck B; Schieffelers DR; Guns PJ; van Breda E
    Burns; 2023 Nov; 49(7):1574-1584. PubMed ID: 37833149
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training.
    Bowen TS; Schuler G; Adams V
    J Cachexia Sarcopenia Muscle; 2015 Sep; 6(3):197-207. PubMed ID: 26401465
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proteomic analysis of altered protein expression in skeletal muscle of rats in a hypermetabolic state induced by burn sepsis.
    Duan X; Berthiaume F; Yarmush D; Yarmush ML
    Biochem J; 2006 Jul; 397(1):149-58. PubMed ID: 16483253
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disuse-induced muscle wasting.
    Bodine SC
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2200-8. PubMed ID: 23800384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis.
    Costelli P; Baccino FM
    Curr Opin Clin Nutr Metab Care; 2003 Jul; 6(4):407-12. PubMed ID: 12806214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.
    Saitoh M; Ishida J; Doehner W; von Haehling S; Anker MS; Coats AJS; Anker SD; Springer J
    Int J Cardiol; 2017 Jul; 238():5-11. PubMed ID: 28427849
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of muscle protein synthesis and the effects of catabolic states.
    Gordon BS; Kelleher AR; Kimball SR
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2147-57. PubMed ID: 23769967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resistance exercise and appropriate nutrition to counteract muscle wasting and promote muscle hypertrophy.
    Glover EI; Phillips SM
    Curr Opin Clin Nutr Metab Care; 2010 Nov; 13(6):630-4. PubMed ID: 20829685
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress in elucidating signalling proteolytic pathways in muscle wasting: potential clinical implications.
    Polge C; Heng AE; Combaret L; Béchet D; Taillandier D; Attaix D
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S1-5. PubMed ID: 23149071
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.
    Ebner N; Elsner S; Springer J; von Haehling S
    Curr Opin Support Palliat Care; 2014 Mar; 8(1):15-24. PubMed ID: 24452279
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Factors contributing to muscle wasting and dysfunction in COPD patients.
    Wüst RC; Degens H
    Int J Chron Obstruct Pulmon Dis; 2007; 2(3):289-300. PubMed ID: 18229567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Mechanisms of skeletal muscle wasting after severe burn and its treatment].
    CHAI JK
    Zhonghua Shao Shang Za Zhi; 2009 Aug; 25(4):243-5. PubMed ID: 19951538
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action.
    Dutt V; Gupta S; Dabur R; Injeti E; Mittal A
    Pharmacol Res; 2015 Sep; 99():86-100. PubMed ID: 26048279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased expression of atrogenes and TWEAK family members after severe burn injury in nonburned human skeletal muscle.
    Merritt EK; Thalacker-Mercer A; Cross JM; Windham ST; Thomas SJ; Bamman MM
    J Burn Care Res; 2013; 34(5):e297-304. PubMed ID: 23816995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.