These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 36760999)

  • 1. Identification of functional gene modules by integrating multi-omics data and known molecular interactions.
    Chen X; Han M; Li Y; Li X; Zhang J; Zhu Y
    Front Genet; 2023; 14():1082032. PubMed ID: 36760999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUBATOMIC: a SUbgraph BAsed mulTi-OMIcs clustering framework to analyze integrated multi-edge networks.
    Loers JU; Vermeirssen V
    BMC Bioinformatics; 2022 Sep; 23(1):363. PubMed ID: 36064320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of ovarian cancer driver genes by using module network integration of multi-omics data.
    Gevaert O; Villalobos V; Sikic BI; Plevritis SK
    Interface Focus; 2013 Aug; 3(4):20130013. PubMed ID: 24511378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empowering biologists with multi-omics data: colorectal cancer as a paradigm.
    Zhu J; Shi Z; Wang J; Zhang B
    Bioinformatics; 2015 May; 31(9):1436-43. PubMed ID: 25527095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TSUNAMI: Translational Bioinformatics Tool Suite for Network Analysis and Mining.
    Huang Z; Han Z; Wang T; Shao W; Xiang S; Salama P; Rizkalla M; Huang K; Zhang J
    Genomics Proteomics Bioinformatics; 2021 Dec; 19(6):1023-1031. PubMed ID: 33705981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LinkedOmics: analyzing multi-omics data within and across 32 cancer types.
    Vasaikar SV; Straub P; Wang J; Zhang B
    Nucleic Acids Res; 2018 Jan; 46(D1):D956-D963. PubMed ID: 29136207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Follistatin-Like 3 Correlates With Lymph Node Metastasis and Serves as a Biomarker of Extracellular Matrix Remodeling in Colorectal Cancer.
    Yang C; Cao F; Huang S; Zheng Y
    Front Immunol; 2021; 12():717505. PubMed ID: 34335633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis.
    Dai GP; Wang LP; Wen YQ; Ren XQ; Zuo SG
    Oncol Lett; 2020 Jan; 19(1):388-398. PubMed ID: 31897151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systemic Analysis of Transcriptomic and Epigenomic Data To Reveal Regulation Patterns for Complex Disease.
    Xu C; Zhang JG; Lin D; Zhang L; Shen H; Deng HW
    G3 (Bethesda); 2017 Jul; 7(7):2271-2279. PubMed ID: 28500050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-omic integration of microbiome data for identifying disease-associated modules.
    Muller E; Shiryan I; Borenstein E
    bioRxiv; 2024 Jan; ():. PubMed ID: 37461534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miRModuleNet: Detecting miRNA-mRNA Regulatory Modules.
    Yousef M; Goy G; Bakir-Gungor B
    Front Genet; 2022; 13():767455. PubMed ID: 35495139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Integration-based co-expression network analysis to investigate tumor-associated modules across three cancer types].
    Wang M; Han M; Liu B; Tian C; Zhu Y
    Sheng Wu Gong Cheng Xue Bao; 2021 Nov; 37(11):4111-4123. PubMed ID: 34841811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample-Wise and Gene-Wise Comparisons Confirm a Greater Similarity of RNA and Protein Expression Data at the Level of Molecular Pathways and Suggest an Approach for the Data Quality Check in High-Throughput Expression Databases.
    Raevskiy M; Sorokin M; Emelianova A; Zakharova G; Poddubskaya E; Zolotovskaia M; Buzdin A
    Biochemistry (Mosc); 2024 Apr; 89(4):737-746. PubMed ID: 38831509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CARMO: a comprehensive annotation platform for functional exploration of rice multi-omics data.
    Wang J; Qi M; Liu J; Zhang Y
    Plant J; 2015 Jul; 83(2):359-74. PubMed ID: 26040787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ReactomeGSA - Efficient Multi-Omics Comparative Pathway Analysis.
    Griss J; Viteri G; Sidiropoulos K; Nguyen V; Fabregat A; Hermjakob H
    Mol Cell Proteomics; 2020 Dec; 19(12):2115-2125. PubMed ID: 32907876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GREMI: An Explainable Multi-Omics Integration Framework for Enhanced Disease Prediction and Module Identification.
    Liang H; Luo H; Sang Z; Jia M; Jiang X; Wang Z; Cong S; Yao X
    IEEE J Biomed Health Inform; 2024 Nov; 28(11):6983-6996. PubMed ID: 39110558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.