BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 36761981)

  • 1. Hypoxia induced lactate acidosis modulates tumor microenvironment and lipid reprogramming to sustain the cancer cell survival.
    Singh L; Nair L; Kumar D; Arora MK; Bajaj S; Gadewar M; Mishra SS; Rath SK; Dubey AK; Kaithwas G; Choudhary M; Singh M
    Front Oncol; 2023; 13():1034205. PubMed ID: 36761981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate acidosis and simultaneous recruitment of TGF-β leads to alter plasticity of hypoxic cancer cells in tumor microenvironment.
    Rastogi S; Mishra SS; Arora MK; Kaithwas G; Banerjee S; Ravichandiran V; Roy S; Singh L
    Pharmacol Ther; 2023 Oct; 250():108519. PubMed ID: 37625521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment.
    Pérez-Tomás R; Pérez-Guillén I
    Cancers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactate promotes metastasis of normoxic colorectal cancer stem cells through PGC-1α-mediated oxidative phosphorylation.
    Liu S; Zhao H; Hu Y; Yan C; Mi Y; Li X; Tao D; Qin J
    Cell Death Dis; 2022 Jul; 13(7):651. PubMed ID: 35896535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatal Alliance of Hypoxia-/HIF-1α-Driven Microenvironmental Traits Promoting Cancer Progression.
    Vaupel P; Multhoff G
    Adv Exp Med Biol; 2020; 1232():169-176. PubMed ID: 31893407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions.
    Vallée A; Lecarpentier Y; Vallée JN
    Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors.
    Leung E; Cairns RA; Chaudary N; Vellanki RN; Kalliomaki T; Moriyama EH; Mujcic H; Wilson BC; Wouters BG; Hill R; Milosevic M
    BMC Cancer; 2017 Jun; 17(1):418. PubMed ID: 28619042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more.
    Hao X; Ren Y; Feng M; Wang Q; Wang Y
    Biomed Pharmacother; 2021 Sep; 141():111798. PubMed ID: 34120068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor Microenvironment Acidity Triggers Lipid Accumulation in Liver Cancer via SCD1 Activation.
    Ding M; Zhang S; Guo Y; Yao J; Shen Q; Huang M; Chen W; Yu S; Zheng Y; Lin Y; Yan W; Liu Z; Su T; Lu L
    Mol Cancer Res; 2022 May; 20(5):810-822. PubMed ID: 35046108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the Warburg effect: historical dogma versus current understanding.
    Vaupel P; Multhoff G
    J Physiol; 2021 Mar; 599(6):1745-1757. PubMed ID: 33347611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth.
    Choi H; Yeo M; Kang Y; Kim HJ; Park SG; Jang E; Park SH; Kim E; Kang S
    J Nanobiotechnology; 2023 Jan; 21(1):5. PubMed ID: 36597089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Switch in the Tumor Microenvironment Determines Immune Responses to Anti-cancer Therapy.
    Wegiel B; Vuerich M; Daneshmandi S; Seth P
    Front Oncol; 2018; 8():284. PubMed ID: 30151352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches.
    de la Cruz-López KG; Castro-Muñoz LJ; Reyes-Hernández DO; García-Carrancá A; Manzo-Merino J
    Front Oncol; 2019; 9():1143. PubMed ID: 31737570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reprogramming of T regulatory cells in the hypoxic tumor microenvironment.
    Sasidharan Nair V; Saleh R; Toor SM; Cyprian FS; Elkord E
    Cancer Immunol Immunother; 2021 Aug; 70(8):2103-2121. PubMed ID: 33532902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid metabolic reprogramming by hypoxia-inducible factor-1 in the hypoxic tumour microenvironment.
    Seo J; Yun JE; Kim SJ; Chun YS
    Pflugers Arch; 2022 Jun; 474(6):591-601. PubMed ID: 35348849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-dependent and extracellular adenosine-mediated tumor protection.
    Hatfield SM; Kjaergaard J; Lukashev D; Belikoff B; Schreiber TH; Sethumadhavan S; Abbott R; Philbrook P; Thayer M; Shujia D; Rodig S; Kutok JL; Ren J; Ohta A; Podack ER; Karger B; Jackson EK; Sitkovsky M
    J Mol Med (Berl); 2014 Dec; 92(12):1283-92. PubMed ID: 25120128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tumor microenvironment conditions alter Akt and Na
    Pedersen AK; Mendes Lopes de Melo J; Mørup N; Tritsaris K; Pedersen SF
    BMC Cancer; 2017 Aug; 17(1):542. PubMed ID: 28806945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate in the tumour microenvironment: From immune modulation to therapy.
    Wang ZH; Peng WB; Zhang P; Yang XP; Zhou Q
    EBioMedicine; 2021 Nov; 73():103627. PubMed ID: 34656878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumor Microenvironment and Nitric Oxide: Concepts and Mechanisms.
    Vedenko A; Panara K; Goldstein G; Ramasamy R; Arora H
    Adv Exp Med Biol; 2020; 1277():143-158. PubMed ID: 33119871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment.
    Hayes C; Donohoe CL; Davern M; Donlon NE
    Cancer Lett; 2021 Mar; 500():75-86. PubMed ID: 33347908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.