These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 3676242)

  • 41. [Energy utilization of Palatinit].
    Berschauer F; Spengler M
    Dtsch Zahnarztl Z; 1987 Oct; 42(10 Suppl 1):S145-50. PubMed ID: 3483700
    [No Abstract]   [Full Text] [Related]  

  • 42. Dose dependence of breath hydrogen and methane in healthy volunteers after ingestion of a commercial disaccharide mixture, Palatinit.
    Fritz M; Siebert G; Kasper H
    Br J Nutr; 1985 Sep; 54(2):389-400. PubMed ID: 4063326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative study of isomalt and sucrose by means of continuous indirect calorimetry.
    Thiébaud D; Jacot E; Schmitz H; Spengler M; Felber JP
    Metabolism; 1984 Sep; 33(9):808-13. PubMed ID: 6381959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic fate of ingested [14C]-maltitol in man.
    Oku T; Akiba M; Lee MH; Moon SJ; Hosoya N
    J Nutr Sci Vitaminol (Tokyo); 1991 Oct; 37(5):529-44. PubMed ID: 1802977
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New approach to the metabolism of hydrogenated starch hydrolysate: hydrolysis by the maltase/glucoamylase complex of the rat intestinal mucosa.
    Rosiers C; Verwaerde F; Dupas H; Bouquelet S
    Ann Nutr Metab; 1985; 29(2):76-82. PubMed ID: 3922278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of maltitol, isomaltitol, and lactitol by high-pH anion-exchange chromatography with pulsed amperometric detection.
    Cataldi TR; Campa C; Casella IG; Bufo SA
    J Agric Food Chem; 1999 Jan; 47(1):157-63. PubMed ID: 10563865
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Proximal small intestinal mucosal injury. Maintenance of glucose and glucose polymer absorption, attenuation of disaccharide absorption.
    Palacios M; Madariaga H; Heitlinger L; Lee PC; Lebenthal E
    Dig Dis Sci; 1989 Mar; 34(3):385-9. PubMed ID: 2493365
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Anaerobic transformation of Palatinit by microorganisms of the human oral cavity].
    Gülzow HJ
    Dtsch Zahnarztl Z; 1982 Aug; 37(8):669-72. PubMed ID: 6957291
    [No Abstract]   [Full Text] [Related]  

  • 49. Nutritional studies on maltitol. Part 1: Acceptability, energetic yield, effects on growth and blood biochemical parameters.
    Maranesi M; Gentili P; Carenini G
    Acta Vitaminol Enzymol; 1984; 6(1):3-9. PubMed ID: 6464932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system.
    Ramaswamy K; Malathi P; Caspary WF; Crane RK
    Biochim Biophys Acta; 1974 Apr; 345(1):39-48. PubMed ID: 4838205
    [No Abstract]   [Full Text] [Related]  

  • 51. Disaccharide hydrolysis, intestinal absorption and electrogenic properties in salmonella enterocolitis in mice.
    Madge DS
    Digestion; 1974; 11(1-2):25-38. PubMed ID: 4452423
    [No Abstract]   [Full Text] [Related]  

  • 52. Enhanced absorption of calcium after oral administration of maltitol in the rat intestine.
    Fukahori M; Sakurai H; Akatsu S; Negishi M; Sato H; Goda T; Takase S
    J Pharm Pharmacol; 1998 Nov; 50(11):1227-32. PubMed ID: 9877307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrolysis-dependent absorption of disaccharides in the rat small intestine (chronic experiments and mathematical modeling).
    Gromova LV; Gruzdkov AA
    Gen Physiol Biophys; 1999 Jun; 18(2):209-24. PubMed ID: 10517294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine.
    Parson DS; Prichard JS
    J Physiol; 1971 Jan; 212(2):299-319. PubMed ID: 5548008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Method of Quantitative Analysis by HPLC and Confirmation by LC-MS/MS of Erythritol, Maltitol, Lactitol and Trehalose in Foods].
    Takemori M; Sakamaki N; Sadamasu Y; Uematsu Y; Monma K; Shindo T; Kobayashi C
    Shokuhin Eiseigaku Zasshi; 2018; 59(3):99-105. PubMed ID: 30033995
    [TBL] [Abstract][Full Text] [Related]  

  • 56. On the occurrence of free glucose in the caecal contents of rats.
    Siebert G
    Z Ernahrungswiss; 1987 Jun; 26(2):138-41. PubMed ID: 3630246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Di- and oligosaccharide substrate specificities and subsite binding energies of pig intestinal glucoamylase-maltase.
    Günther S; Heymann H
    Arch Biochem Biophys; 1998 Jun; 354(1):111-6. PubMed ID: 9633604
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sugar alcohols enhance calcium transport from rat small and large intestine epithelium in vitro.
    Mineo H; Hara H; Tomita F
    Dig Dis Sci; 2002 Jun; 47(6):1326-33. PubMed ID: 12064809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantification of γ-sorbitol crystal growth rate and solubility in the presence of mannitol and maltitol.
    DeJong AE; Hartel RW
    J Food Sci; 2020 Dec; 85(12):4319-4326. PubMed ID: 33175398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical caries studies with polyalcohols. A literature review.
    Imfeld TN
    Schweiz Monatsschr Zahnmed; 1994; 104(8):941-5. PubMed ID: 8091172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.