BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36762456)

  • 1. Impact of Ge clustering on the thermal conductivity of SiGe nanowires: atomistic simulation study.
    Kuryliuk V; Tyvonovych O; Semchuk S
    Phys Chem Chem Phys; 2023 Feb; 25(8):6263-6269. PubMed ID: 36762456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the Coherent Phonon Transport in SiGe Nanowires with Dense Si/Ge Interfaces.
    Cheng Y; Xiong S; Zhang T
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large reduction in thermal conductivity for SiGe alloy nanowire wrapped with a Ge nanoparticle-embedded SiO2 shell.
    Lee JW; Lee J; Jung SH; Jang Y; Choi BL; Yang CW; Whang D; Lee EK
    Nanotechnology; 2016 Jul; 27(30):305703. PubMed ID: 27306569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires.
    Qu X; Gu J
    RSC Adv; 2020 Jan; 10(3):1243-1248. PubMed ID: 35494690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon transport in the nano-system of Si and SiGe films with Ge nanodots and approach to ultralow thermal conductivity.
    Taniguchi T; Terada T; Komatsubara Y; Ishibe T; Konoike K; Sanada A; Naruse N; Mera Y; Nakamura Y
    Nanoscale; 2021 Mar; 13(9):4971-4977. PubMed ID: 33629704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Si/Ge superlattice nanowires with ultralow thermal conductivity.
    Hu M; Poulikakos D
    Nano Lett; 2012 Nov; 12(11):5487-94. PubMed ID: 23106449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What is the thermal conductivity limit of silicon germanium alloys?
    Lee Y; Pak AJ; Hwang GS
    Phys Chem Chem Phys; 2016 Jul; 18(29):19544-8. PubMed ID: 27398924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean Free Path Suppression of Low-Frequency Phonons in SiGe Nanowires.
    Smith B; Fleming G; Parrish KD; Wen F; Fleming E; Jarvis K; Tutuc E; McGaughey AJH; Shi L
    Nano Lett; 2020 Nov; 20(11):8384-8391. PubMed ID: 33054227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties.
    Lee EK; Yin L; Lee Y; Lee JW; Lee SJ; Lee J; Cha SN; Whang D; Hwang GS; Hippalgaonkar K; Majumdar A; Yu C; Choi BL; Kim JM; Kim K
    Nano Lett; 2012 Jun; 12(6):2918-23. PubMed ID: 22548377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants of thermal conductivity and diffusivity in nanostructural semiconductors.
    Yang CC; Armellin J; Li S
    J Phys Chem B; 2008 Feb; 112(5):1482-6. PubMed ID: 18193865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical studies of the passivants' effect on the Si(x)Ge(1-x) nanowires: composition profiles, diameter, shape, and electronic properties.
    Yang XB; Zhao YJ; Xu H
    J Chem Phys; 2013 Oct; 139(15):154713. PubMed ID: 24160539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.
    Hu M; Giapis KP; Goicochea JV; Zhang X; Poulikakos D
    Nano Lett; 2011 Feb; 11(2):618-23. PubMed ID: 21141989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal transport in epitaxial Si
    Sachat AE; Reparaz JS; Spiece J; Alonso MI; Goñi AR; Garriga M; Vaccaro PO; Wagner MR; Kolosov OV; Sotomayor Torres CM; Alzina F
    Nanotechnology; 2017 Dec; 28(50):505704. PubMed ID: 29160238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
    Wan W; Xiong B; Zhang W; Feng J; Wang E
    J Phys Condens Matter; 2012 Jul; 24(29):295402. PubMed ID: 22728956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.
    Jiang JW; Yang N; Wang BS; Rabczuk T
    Nano Lett; 2013 Apr; 13(4):1670-4. PubMed ID: 23517486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phonon coherent resonance and its effect on thermal transport in core-shell nanowires.
    Chen J; Zhang G; Li B
    J Chem Phys; 2011 Sep; 135(10):104508. PubMed ID: 21932911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures.
    Kandemir A; Ozden A; Cagin T; Sevik C
    Sci Technol Adv Mater; 2017; 18(1):187-196. PubMed ID: 28469733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of atomistic coating on thermal conductivity of germanium nanowires.
    Chen J; Zhang G; Li B
    Nano Lett; 2012 Jun; 12(6):2826-32. PubMed ID: 22545778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires.
    Martin PN; Aksamija Z; Pop E; Ravaioli U
    Nano Lett; 2010 Apr; 10(4):1120-4. PubMed ID: 20222669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of room-temperature ballistic thermal conduction persisting over 8.3 µm in SiGe nanowires.
    Hsiao TK; Chang HK; Liou SC; Chu MW; Lee SC; Chang CW
    Nat Nanotechnol; 2013 Jul; 8(7):534-8. PubMed ID: 23812186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.