These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36762456)

  • 21. Morphology and temperature dependence of the thermal conductivity of nanoporous SiGe.
    He Y; Donadio D; Galli G
    Nano Lett; 2011 Sep; 11(9):3608-11. PubMed ID: 21859096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime.
    Wingert MC; Chen ZC; Dechaumphai E; Moon J; Kim JH; Xiang J; Chen R
    Nano Lett; 2011 Dec; 11(12):5507-13. PubMed ID: 22112167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires.
    Malhotra A; Maldovan M
    Sci Rep; 2016 May; 6():25818. PubMed ID: 27174699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient mechanical modulation of the phonon thermal conductivity of Mo
    Xu K; Deng S; Liang T; Cao X; Han M; Zeng X; Zhang Z; Yang N; Wu J
    Nanoscale; 2022 Feb; 14(8):3078-3086. PubMed ID: 35138319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermal Conductivity of 3C/4H-SiC Nanowires by Molecular Dynamics Simulation.
    Yin K; Shi L; Ma X; Zhong Y; Li M; He X
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal conductivity reduction in silicon fishbone nanowires.
    Maire J; Anufriev R; Hori T; Shiomi J; Volz S; Nomura M
    Sci Rep; 2018 Mar; 8(1):4452. PubMed ID: 29535335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers.
    Pernot G; Stoffel M; Savic I; Pezzoli F; Chen P; Savelli G; Jacquot A; Schumann J; Denker U; Mönch I; Deneke Ch; Schmidt OG; Rampnoux JM; Wang S; Plissonnier M; Rastelli A; Dilhaire S; Mingo N
    Nat Mater; 2010 Jun; 9(6):491-5. PubMed ID: 20436465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal conductivity of one-dimensional organic nanowires: effect of mass difference phonon scattering.
    Liu B; Zhou J; Xu X; Li B
    Nanotechnology; 2020 Aug; 31(32):324003. PubMed ID: 32325442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-low Thermal Conductivity in Si/Ge Hierarchical Superlattice Nanowire.
    Mu X; Wang L; Yang X; Zhang P; To AC; Luo T
    Sci Rep; 2015 Nov; 5():16697. PubMed ID: 26568511
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growth of heterojunctions in Si-Ge alloy nanowires by altering AuGeSi eutectic composition using an approach based on thermal oxidation.
    Sun YT; Lee HY; Wang IT; Wen CY
    Nanotechnology; 2019 Jul; 30(28):284002. PubMed ID: 30913543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polar surface effects on the thermal conductivity of ZnO nanowires: a shell-like surface reconstruction-induced preserving mechanism.
    Jiang JW; Park HS; Rabczuk T
    Nanoscale; 2013 Nov; 5(22):11035-43. PubMed ID: 24071784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Halogenation of SiGe monolayers: robust changes in electronic and thermal transport.
    Sharma V; Kagdada HL; Jha PK; Spiewak P; Kurzydłowski KJ
    Phys Chem Chem Phys; 2019 Sep; 21(35):19488-19498. PubMed ID: 31461101
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Low Surface Recombination in Hexagonal SiGe Alloy Nanowires: Implications for SiGe-Based Nanolasers.
    Berghuis WJHW; van Tilburg MAJ; Peeters WHJ; van Lange VT; Farina R; Fadaly EMT; Renirie ECM; Theeuwes RJ; Verheijen MA; Macco B; Bakkers EPAM; Haverkort JEM; Kessels WMME
    ACS Appl Nano Mater; 2024 Jan; 7(2):2343-2351. PubMed ID: 38298254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blocking Phonon Transport by Structural Resonances in Alloy-Based Nanophononic Metamaterials Leads to Ultralow Thermal Conductivity.
    Xiong S; Sääskilahti K; Kosevich YA; Han H; Donadio D; Volz S
    Phys Rev Lett; 2016 Jul; 117(2):025503. PubMed ID: 27447516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamic simulation of thermal transport in monolayer C
    Yang B; Han D; Wang X; Hu S; Xin Q; Cao BY; Xin G
    Nanotechnology; 2020 May; 31(18):185404. PubMed ID: 31952060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanowires with dislocations for ultralow lattice thermal conductivity.
    Al-Ghalith J; Ni Y; Dumitrică T
    Phys Chem Chem Phys; 2016 Apr; 18(15):9888-92. PubMed ID: 27006321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Producing Atomically Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires by Thermal Oxidation.
    Lee HY; Shen TH; Hu CY; Tsai YY; Wen CY
    Nano Lett; 2017 Dec; 17(12):7494-7499. PubMed ID: 29185770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal conductivity of individual Si and SiGe epitaxially integrated NWs by scanning thermal microscopy.
    Sojo Gordillo JM; Gadea Diez G; Pacios Pujadó M; Salleras M; Estrada-Wiese D; Dolcet M; Fonseca L; Morata A; Tarancón A
    Nanoscale; 2021 Apr; 13(15):7252-7265. PubMed ID: 33889903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-plane thermal transport in black phosphorene/graphene layered heterostructures: a molecular dynamics study.
    Liang T; Zhang P; Yuan P; Zhai S
    Phys Chem Chem Phys; 2018 Aug; 20(32):21151-21162. PubMed ID: 30079924
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B; Tang G; Li Y
    Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.