BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36762624)

  • 1. In vivo profiling of the Zucchini proximal proteome in the Drosophila ovary.
    Nguyen TTM; Munkhzul C; Kim J; Kyoung Y; Vianney M; Shin S; Ju S; Pham-Bui HA; Kim J; Kim JS; Lee M
    Development; 2023 Feb; 150(4):. PubMed ID: 36762624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zucchini-dependent piRNA processing is triggered by recruitment to the cytoplasmic processing machinery.
    Rogers AK; Situ K; Perkins EM; Toth KF
    Genes Dev; 2017 Sep; 31(18):1858-1869. PubMed ID: 29021243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of Zucchini endoribonuclease in piRNA biogenesis.
    Nishimasu H; Ishizu H; Saito K; Fukuhara S; Kamatani MK; Bonnefond L; Matsumoto N; Nishizawa T; Nakanaga K; Aoki J; Ishitani R; Siomi H; Siomi MC; Nureki O
    Nature; 2012 Nov; 491(7423):284-7. PubMed ID: 23064230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of mitochondrial Zucchini and its relation to nuage-piRNA pathway components in Bombyx mori ovary-derived BmN4 cells.
    Patil AA; Tatsuke T; Mon H; Lee JM; Morokuma D; Hino M; Kusakabe T
    Biochem Biophys Res Commun; 2017 Nov; 493(2):971-978. PubMed ID: 28942151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical roles of mitochondrial Papi and Zucchini in Bombyx germline piRNA biogenesis.
    Nishida KM; Sakakibara K; Iwasaki YW; Yamada H; Murakami R; Murota Y; Kawamura T; Kodama T; Siomi H; Siomi MC
    Nature; 2018 Mar; 555(7695):260-264. PubMed ID: 29489748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of Armitage and Yb to a transcript triggers its phased processing into primary piRNAs in Drosophila ovaries.
    Pandey RR; Homolka D; Chen KM; Sachidanandam R; Fauvarque MO; Pillai RS
    PLoS Genet; 2017 Aug; 13(8):e1006956. PubMed ID: 28827804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery.
    Munafò M; Manelli V; Falconio FA; Sawle A; Kneuss E; Eastwood EL; Seah JWE; Czech B; Hannon GJ
    Genes Dev; 2019 Jul; 33(13-14):844-856. PubMed ID: 31123065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evolutionarily conserved stop codon enrichment at the 5' ends of mammalian piRNAs.
    Bornelöv S; Czech B; Hannon GJ
    Nat Commun; 2022 Apr; 13(1):2118. PubMed ID: 35440552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila.
    Haase AD; Fenoglio S; Muerdter F; Guzzardo PM; Czech B; Pappin DJ; Chen C; Gordon A; Hannon GJ
    Genes Dev; 2010 Nov; 24(22):2499-504. PubMed ID: 20966049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kc167, a widely used Drosophila cell line, contains an active primary piRNA pathway.
    Vrettos N; Maragkakis M; Alexiou P; Mourelatos Z
    RNA; 2017 Jan; 23(1):108-118. PubMed ID: 27789612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire.
    Senti KA; Jurczak D; Sachidanandam R; Brennecke J
    Genes Dev; 2015 Aug; 29(16):1747-62. PubMed ID: 26302790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The piRNA pathway in flies: highlights and future directions.
    Guzzardo PM; Muerdter F; Hannon GJ
    Curr Opin Genet Dev; 2013 Feb; 23(1):44-52. PubMed ID: 23317515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila PAF1 Modulates PIWI/piRNA Silencing Capacity.
    Clark JP; Rahman R; Yang N; Yang LH; Lau NC
    Curr Biol; 2017 Sep; 27(17):2718-2726.e4. PubMed ID: 28844648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Tudor domain protein Tapas, a homolog of the vertebrate Tdrd7, functions in the piRNA pathway to regulate retrotransposons in germline of Drosophila melanogaster.
    Patil VS; Anand A; Chakrabarti A; Kai T
    BMC Biol; 2014 Oct; 12():61. PubMed ID: 25287931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable expression levels detected in the Drosophila effectors of piRNA biogenesis.
    Fablet M; Akkouche A; Braman V; Vieira C
    Gene; 2014 Mar; 537(1):149-53. PubMed ID: 24361206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Stable Drosophila Ovarian Somatic Cell Lines Using the piggyBac System.
    Takeuchi C; Murano K; Ishikawa M; Okano H; Iwasaki YW
    Methods Mol Biol; 2022; 2509():143-153. PubMed ID: 35796962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial protein BmPAPI modulates the length of mature piRNAs.
    Honda S; Kirino Y; Maragkakis M; Alexiou P; Ohtaki A; Murali R; Mourelatos Z; Kirino Y
    RNA; 2013 Oct; 19(10):1405-18. PubMed ID: 23970546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary.
    Ohtani H; Iwasaki YW; Shibuya A; Siomi H; Siomi MC; Saito K
    Genes Dev; 2013 Aug; 27(15):1656-61. PubMed ID: 23913921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternally inherited siRNAs initiate piRNA cluster formation.
    Luo Y; He P; Kanrar N; Fejes Toth K; Aravin AA
    Mol Cell; 2023 Nov; 83(21):3835-3851.e7. PubMed ID: 37875112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drosophila interspecific hybrids phenocopy piRNA-pathway mutants.
    Kelleher ES; Edelman NB; Barbash DA
    PLoS Biol; 2012; 10(11):e1001428. PubMed ID: 23189033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.