These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36762917)
1. Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon. Malone SC; Simonpietri A; Knighton WB; Trowbridge AM Tree Physiol; 2023 Jun; 43(6):938-951. PubMed ID: 36762917 [TBL] [Abstract][Full Text] [Related]
2. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance. Harley P; Eller A; Guenther A; Monson RK Oecologia; 2014 Sep; 176(1):35-55. PubMed ID: 25015120 [TBL] [Abstract][Full Text] [Related]
3. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Anderegg LD; HilleRisLambers J Glob Chang Biol; 2016 Mar; 22(3):1029-45. PubMed ID: 26663665 [TBL] [Abstract][Full Text] [Related]
4. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Eller AS; Young LL; Trowbridge AM; Monson RK Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962 [TBL] [Abstract][Full Text] [Related]
6. Simulated Herbivory Affects the Volatile Emissions of Oak Saplings, while Neighbourhood Affects Flavan-3-ols Content of Their Leaves. Molleman F; Mandal M; Sokół-Łętowska A; Walczak U; Volf M; Mallick S; Moos M; Vodrážka P; Prinzing A; Mezzomo P J Chem Ecol; 2024 Jun; 50(5-6):250-261. PubMed ID: 38270732 [TBL] [Abstract][Full Text] [Related]
7. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests. Trowbridge AM; Daly RW; Helmig D; Stoy PC; Monson RK Ecology; 2014 Jun; 95(6):1591-603. PubMed ID: 25039223 [TBL] [Abstract][Full Text] [Related]
8. Drought-Mediated Changes in Tree Physiological Processes Weaken Tree Defenses to Bark Beetle Attack. Kolb T; Keefover-Ring K; Burr SJ; Hofstetter R; Gaylord M; Raffa KF J Chem Ecol; 2019 Oct; 45(10):888-900. PubMed ID: 31493165 [TBL] [Abstract][Full Text] [Related]
9. Stronger influence of growth rate than severity of drought stress on mortality of large ponderosa pines during the 2012-2015 California drought. Keen RM; Voelker SL; Bentz BJ; Wang SS; Ferrell R Oecologia; 2020 Nov; 194(3):359-370. PubMed ID: 33030569 [TBL] [Abstract][Full Text] [Related]
10. Leaf-level metabolic changes in response to drought affect daytime CO2 emission and isoprenoid synthesis pathways. Ladd SN; Daber LE; Bamberger I; Kübert A; Kreuzwieser J; Purser G; Ingrisch J; Deleeuw J; van Haren J; Meredith LK; Werner C Tree Physiol; 2023 Nov; 43(11):1917-1932. PubMed ID: 37552065 [TBL] [Abstract][Full Text] [Related]
11. Local carbon reserves are insufficient for phloem terpene induction during drought in Pinus edulis in response to bark beetle-associated fungi. Thompson RA; Malone SC; Peltier D; Six D; Robertson N; Oliveira C; McIntire CD; Pockman WT; McDowell NG; Trowbridge AM; Adams HD New Phytol; 2024 Oct; 244(2):654-669. PubMed ID: 39149848 [TBL] [Abstract][Full Text] [Related]
12. Leaf rust infection reduces herbivore-induced volatile emission in black poplar and attracts a generalist herbivore. Eberl F; Hammerbacher A; Gershenzon J; Unsicker SB New Phytol; 2018 Nov; 220(3):760-772. PubMed ID: 28418581 [TBL] [Abstract][Full Text] [Related]
13. Central European 2018 hot drought shifts scots pine forest to its tipping point. Haberstroh S; Werner C; Grün M; Kreuzwieser J; Seifert T; Schindler D; Christen A Plant Biol (Stuttg); 2022 Dec; 24(7):1186-1197. PubMed ID: 35869655 [TBL] [Abstract][Full Text] [Related]
14. Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances. Lüpke M; Leuchner M; Steinbrecher R; Menzel A Tree Physiol; 2016 Nov; 36(11):1382-1399. PubMed ID: 27591438 [TBL] [Abstract][Full Text] [Related]
15. Changes in tree drought sensitivity provided early warning signals to the California drought and forest mortality event. Keen RM; Voelker SL; Wang SS; Bentz BJ; Goulden ML; Dangerfield CR; Reed CC; Hood SM; Csank AZ; Dawson TE; Merschel AG; Still CJ Glob Chang Biol; 2022 Feb; 28(3):1119-1132. PubMed ID: 34735729 [TBL] [Abstract][Full Text] [Related]
17. Warming increased bark beetle-induced tree mortality by 30% during an extreme drought in California. Robbins ZJ; Xu C; Aukema BH; Buotte PC; Chitra-Tarak R; Fettig CJ; Goulden ML; Goodsman DW; Hall AD; Koven CD; Kueppers LM; Madakumbura GD; Mortenson LA; Powell JA; Scheller RM Glob Chang Biol; 2022 Jan; 28(2):509-523. PubMed ID: 34713535 [TBL] [Abstract][Full Text] [Related]
18. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. Degenhardt DC; Lincoln DE J Chem Ecol; 2006 Apr; 32(4):725-43. PubMed ID: 16718568 [TBL] [Abstract][Full Text] [Related]
19. Mycorrhizae Alter Constitutive and Herbivore-Induced Volatile Emissions by Milkweeds. Meier AR; Hunter MD J Chem Ecol; 2019 Jul; 45(7):610-625. PubMed ID: 31281942 [TBL] [Abstract][Full Text] [Related]
20. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains. Tague CL; McDowell NG; Allen CD PLoS One; 2013; 8(11):e80286. PubMed ID: 24282532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]