These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36762971)

  • 1. Molecular Mechanism of Spectral Tuning by Chloride Binding in Monkey Green Sensitive Visual Pigment.
    Fujimoto KJ; Minowa F; Nishina M; Nakamura S; Ohashi S; Katayama K; Kandori H; Yanai T
    J Phys Chem Lett; 2023 Feb; 14(7):1784-1793. PubMed ID: 36762971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "In situ" observation of the role of chloride ion binding to monkey green sensitive visual pigment by ATR-FTIR spectroscopy.
    Katayama K; Furutani Y; Iwaki M; Fukuda T; Imai H; Kandori H
    Phys Chem Chem Phys; 2018 Jan; 20(5):3381-3387. PubMed ID: 29297909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloride-dependent spectral tuning mechanism of L-group cone visual pigments.
    Yamashita T; Nakamura S; Tsutsui K; Morizumi T; Shichida Y
    Biochemistry; 2013 Feb; 52(7):1192-7. PubMed ID: 23350963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the Cl(-)-binding site in the human red and green color vision pigments.
    Wang Z; Asenjo AB; Oprian DD
    Biochemistry; 1993 Mar; 32(9):2125-30. PubMed ID: 8443153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral tuning of rhodopsin and visual cone pigments.
    Zhou X; Sundholm D; WesoĊ‚owski TA; Kaila VR
    J Am Chem Soc; 2014 Feb; 136(7):2723-6. PubMed ID: 24422511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral Tuning Mechanism of Primate Blue-sensitive Visual Pigment Elucidated by FTIR Spectroscopy.
    Katayama K; Nonaka Y; Tsutsui K; Imai H; Kandori H
    Sci Rep; 2017 Jul; 7(1):4904. PubMed ID: 28687791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iodopsin, a red-sensitive cone visual pigment in the chicken retina.
    Yoshizawa T; Kuwata O
    Photochem Photobiol; 1991 Dec; 54(6):1061-70. PubMed ID: 1775529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FTIR study of primate color visual pigments.
    Katayama K; Kandori H
    Biophysics (Nagoya-shi); 2015; 11():61-6. PubMed ID: 27493516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of spectral tuning in the mouse green cone pigment.
    Sun H; Macke JP; Nathans J
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8860-5. PubMed ID: 9238068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Gln114 in Spectral Tuning of a Long-Wavelength Sensitive Visual Pigment.
    Katayama K; Nakamura S; Sasaki T; Imai H; Kandori H
    Biochemistry; 2019 Jul; 58(26):2944-2952. PubMed ID: 31144811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the stability of the human cone visual pigments.
    Ramon E; Mao X; Ridge KD
    Photochem Photobiol; 2009; 85(2):509-16. PubMed ID: 19192203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colour tuning mechanisms of visual pigments.
    Lin SW; Sakmar TP
    Novartis Found Symp; 1999; 224():124-35; discussion 135-41, 181-90. PubMed ID: 10614049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-bound water molecules in primate red- and green-sensitive visual pigments.
    Katayama K; Furutani Y; Imai H; Kandori H
    Biochemistry; 2012 Feb; 51(6):1126-33. PubMed ID: 22260165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of spectral tuning in blue cone visual pigments. Visible and raman spectroscopy of blue-shifted rhodopsin mutants.
    Lin SW; Kochendoerfer GG; Carroll KS; Wang D; Mathies RA; Sakmar TP
    J Biol Chem; 1998 Sep; 273(38):24583-91. PubMed ID: 9733753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments.
    Kochendoerfer GG; Wang Z; Oprian DD; Mathies RA
    Biochemistry; 1997 Jun; 36(22):6577-87. PubMed ID: 9184137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Color tuning in short wavelength-sensitive human and mouse visual pigments: ab initio quantum mechanics/molecular mechanics studies.
    Altun A; Yokoyama S; Morokuma K
    J Phys Chem A; 2009 Oct; 113(43):11685-92. PubMed ID: 19630373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference in molecular structure of rod and cone visual pigments studied by Fourier transform infrared spectroscopy.
    Imai H; Hirano T; Kandori H; Terakita A; Shichida Y
    Biochemistry; 2001 Mar; 40(9):2879-86. PubMed ID: 11258899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identical Hydrogen-Bonding Strength of the Retinal Schiff Base between Primate Green- and Red-Sensitive Pigments: New Insight into Color Tuning Mechanism.
    Katayama K; Okitsu T; Imai H; Wada A; Kandori H
    J Phys Chem Lett; 2015 Apr; 6(7):1130-3. PubMed ID: 26262961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.