BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36763058)

  • 1. Structural mechanisms for the activation of human cardiac KCNQ1 channel by electro-mechanical coupling enhancers.
    Ma D; Zhong L; Yan Z; Yao J; Zhang Y; Ye F; Huang Y; Lai D; Yang W; Hou P; Guo J
    Proc Natl Acad Sci U S A; 2022 Nov; 119(45):e2207067119. PubMed ID: 36763058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The membrane electric field regulates the PIP
    Mandala VS; MacKinnon R
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2301985120. PubMed ID: 37192161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling.
    Hou P; Shi J; White KM; Gao Y; Cui J
    Elife; 2019 Jul; 8():. PubMed ID: 31329101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryo-EM Structure of a KCNQ1/CaM Complex Reveals Insights into Congenital Long QT Syndrome.
    Sun J; MacKinnon R
    Cell; 2017 Jun; 169(6):1042-1050.e9. PubMed ID: 28575668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calmodulin acts as a state-dependent switch to control a cardiac potassium channel opening.
    Kang PW; Westerlund AM; Shi J; White KM; Dou AK; Cui AH; Silva JR; Delemotte L; Cui J
    Sci Adv; 2020 Dec; 6(50):. PubMed ID: 33310856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and electrophysiological basis for the modulation of KCNQ1 channel currents by ML277.
    Willegems K; Eldstrom J; Kyriakis E; Ataei F; Sahakyan H; Dou Y; Russo S; Van Petegem F; Fedida D
    Nat Commun; 2022 Jun; 13(1):3760. PubMed ID: 35768468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Basis of Human KCNQ1 Modulation and Gating.
    Sun J; MacKinnon R
    Cell; 2020 Jan; 180(2):340-347.e9. PubMed ID: 31883792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PIP
    Liu Y; Xu X; Gao J; Naffaa MM; Liang H; Shi J; Wang HZ; Yang ND; Hou P; Zhao W; White KM; Kong W; Dou A; Cui A; Zhang G; Cohen IS; Zou X; Cui J
    Commun Biol; 2020 Jul; 3(1):385. PubMed ID: 32678288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational changes of an ion-channel during gating and emerging electrophysiologic properties: Application of a computational approach to cardiac Kv7.1.
    Nekouzadeh A; Rudy Y
    Prog Biophys Mol Biol; 2016 Jan; 120(1-3):18-27. PubMed ID: 26743208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A general mechanism of KCNE1 modulation of KCNQ1 channels involving non-canonical VSD-PD coupling.
    Wu X; Perez ME; Noskov SY; Larsson HP
    Commun Biol; 2021 Jul; 4(1):887. PubMed ID: 34285340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing binding sites and mechanisms of action of an I(Ks) activator by computations and experiments.
    Xu Y; Wang Y; Zhang M; Jiang M; Rosenhouse-Dantsker A; Wassenaar T; Tseng GN
    Biophys J; 2015 Jan; 108(1):62-75. PubMed ID: 25564853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gating and Regulation of KCNQ1 and KCNQ1 + KCNE1 Channel Complexes.
    Wang Y; Eldstrom J; Fedida D
    Front Physiol; 2020; 11():504. PubMed ID: 32581825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KCNE1 and KCNE3 modulate KCNQ1 channels by affecting different gating transitions.
    Barro-Soria R; Ramentol R; Liin SI; Perez ME; Kass RS; Larsson HP
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7367-E7376. PubMed ID: 28808020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two small-molecule activators share similar effector sites in the KCNQ1 channel pore but have distinct effects on voltage sensor movements.
    Chen L; Peng G; Comollo TW; Zou X; Sampson KJ; Larsson HP; Kass RS
    Front Physiol; 2022; 13():903050. PubMed ID: 35957984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric hindrance between S4 and S5 of the KCNQ1/KCNE1 channel hampers pore opening.
    Nakajo K; Kubo Y
    Nat Commun; 2014 Jun; 5():4100. PubMed ID: 24920132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The S4-S5 linker of KCNQ1 channels forms a structural scaffold with the S6 segment controlling gate closure.
    Labro AJ; Boulet IR; Choveau FS; Mayeur E; Bruyns T; Loussouarn G; Raes AL; Snyders DJ
    J Biol Chem; 2011 Jan; 286(1):717-25. PubMed ID: 21059661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ML277 regulates KCNQ1 single-channel amplitudes and kinetics, modified by voltage sensor state.
    Eldstrom J; McAfee DA; Dou Y; Wang Y; Fedida D
    J Gen Physiol; 2021 Dec; 153(12):. PubMed ID: 34636894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.
    Choveau FS; Rodriguez N; Abderemane Ali F; Labro AJ; Rose T; Dahimène S; Boudin H; Le Hénaff C; Escande D; Snyders DJ; Charpentier F; Mérot J; Baró I; Loussouarn G
    J Biol Chem; 2011 Jan; 286(1):707-16. PubMed ID: 20940310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of KCNQ1 potassium channels reveals dynamic coupling between voltage sensing and pore opening.
    Hou P; Eldstrom J; Shi J; Zhong L; McFarland K; Gao Y; Fedida D; Cui J
    Nat Commun; 2017 Nov; 8(1):1730. PubMed ID: 29167462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.
    Yu H; Lin Z; Mattmann ME; Zou B; Terrenoire C; Zhang H; Wu M; McManus OB; Kass RS; Lindsley CW; Hopkins CR; Li M
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8732-7. PubMed ID: 23650380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.