BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 36763058)

  • 21. The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.
    Dixit G; Dabney-Smith C; Lorigan GA
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183148. PubMed ID: 31825788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural analysis of the S4-S5 linker of the human KCNQ1 potassium channel.
    Gayen S; Li Q; Kang C
    Biochem Biophys Res Commun; 2015 Jan; 456(1):410-4. PubMed ID: 25475720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Opposite Effects of the S4-S5 Linker and PIP(2) on Voltage-Gated Channel Function: KCNQ1/KCNE1 and Other Channels.
    Choveau FS; Abderemane-Ali F; Coyan FC; Es-Salah-Lamoureux Z; Baró I; Loussouarn G
    Front Pharmacol; 2012; 3():125. PubMed ID: 22787448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic modulation of KCNQ1/KCNE1 K(+) channels (IKs) by phosphatidylinositol 4,5-bisphosphate (PIP2) and [ATP]i.
    Kienitz MC; Vladimirova D
    Cell Signal; 2015 Jul; 27(7):1457-68. PubMed ID: 25892084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural insights into the lipid and ligand regulation of a human neuronal KCNQ channel.
    Zheng Y; Liu H; Chen Y; Dong S; Wang F; Wang S; Li GL; Shu Y; Xu F
    Neuron; 2022 Jan; 110(2):237-247.e4. PubMed ID: 34767770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upgraded molecular models of the human KCNQ1 potassium channel.
    Kuenze G; Duran AM; Woods H; Brewer KR; McDonald EF; Vanoye CG; George AL; Sanders CR; Meiler J
    PLoS One; 2019; 14(9):e0220415. PubMed ID: 31518351
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-stage electro-mechanical coupling of a K
    Hou P; Kang PW; Kongmeneck AD; Yang ND; Liu Y; Shi J; Xu X; White KM; Zaydman MA; Kasimova MA; Seebohm G; Zhong L; Zou X; Tarek M; Cui J
    Nat Commun; 2020 Feb; 11(1):676. PubMed ID: 32015334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of slow activation gating in the cardiac I Ks channel complex.
    Strutz-Seebohm N; Pusch M; Wolf S; Stoll R; Tapken D; Gerwert K; Attali B; Seebohm G
    Cell Physiol Biochem; 2011; 27(5):443-52. PubMed ID: 21691061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels.
    Cui J
    Biophys J; 2016 Jan; 110(1):14-25. PubMed ID: 26745405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of I
    An X; Lee J; Kim GH; Kim HJ; Pyo HJ; Kwon I; Cho H
    J Cell Physiol; 2022 Jul; 237(7):3069-3079. PubMed ID: 35580065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into Cardiac IKs (KCNQ1/KCNE1) Channels Regulation.
    Wu X; Larsson HP
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The EAG Voltage-Dependent K
    Barros F; de la Peña P; Domínguez P; Sierra LM; Pardo LA
    Front Pharmacol; 2020; 11():411. PubMed ID: 32351384
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The residue I257 at S4-S5 linker in KCNQ1 determines KCNQ1/KCNE1 channel sensitivity to 1-alkanols.
    Xie C; Liu HW; Pan N; Ding JP; Yao J
    Acta Pharmacol Sin; 2016 Jan; 37(1):124-33. PubMed ID: 26725740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. KCNQ1 channels do not undergo concerted but sequential gating transitions in both the absence and the presence of KCNE1 protein.
    Meisel E; Dvir M; Haitin Y; Giladi M; Peretz A; Attali B
    J Biol Chem; 2012 Oct; 287(41):34212-24. PubMed ID: 22908235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the Dynamics and Structural Topology of the Reconstituted Human KCNQ1 Voltage Sensor Domain (Q1-VSD) in Lipid Bilayers Using Electron Paramagnetic Resonance Spectroscopy.
    Dixit G; Sahu ID; Reynolds WD; Wadsworth TM; Harding BD; Jaycox CK; Dabney-Smith C; Sanders CR; Lorigan GA
    Biochemistry; 2019 Feb; 58(7):965-973. PubMed ID: 30620191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating.
    Zaydman MA; Cui J
    Front Physiol; 2014; 5():195. PubMed ID: 24904429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.
    Royal AA; Tinker A; Harmer SC
    PLoS One; 2017; 12(10):e0186293. PubMed ID: 29020060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. KCNE3 acts by promoting voltage sensor activation in KCNQ1.
    Barro-Soria R; Perez ME; Larsson HP
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):E7286-92. PubMed ID: 26668384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PKA and PKC partially rescue long QT type 1 phenotype by restoring channel-PIP2 interactions.
    Matavel A; Medei E; Lopes CM
    Channels (Austin); 2010; 4(1):3-11. PubMed ID: 19934648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long QT mutations at the interface between KCNQ1 helix C and KCNE1 disrupt I(KS) regulation by PKA and PIP₂.
    Dvir M; Strulovich R; Sachyani D; Ben-Tal Cohen I; Haitin Y; Dessauer C; Pongs O; Kass R; Hirsch JA; Attali B
    J Cell Sci; 2014 Sep; 127(Pt 18):3943-55. PubMed ID: 25037568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.