These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 36763117)
1. β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Liu S; Narancic T; Tham JL; O'Connor KE Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1863-1874. PubMed ID: 36763117 [TBL] [Abstract][Full Text] [Related]
2. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid beta-oxidation. Tsuge T; Taguchi K; Seiichi T; Doi Y Int J Biol Macromol; 2003 Jan; 31(4-5):195-205. PubMed ID: 12568928 [TBL] [Abstract][Full Text] [Related]
3. Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Sato S; Kanazawa H; Tsuge T Appl Microbiol Biotechnol; 2011 May; 90(3):951-9. PubMed ID: 21327961 [TBL] [Abstract][Full Text] [Related]
4. The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Fiedler S; Steinbüchel A; Rehm BH Arch Microbiol; 2002 Aug; 178(2):149-60. PubMed ID: 12115060 [TBL] [Abstract][Full Text] [Related]
5. Genetic characterization of accumulation of polyhydroxyalkanoate from styrene in Pseudomonas putida CA-3. O'Leary ND; O'Connor KE; Ward P; Goff M; Dobson AD Appl Environ Microbiol; 2005 Aug; 71(8):4380-7. PubMed ID: 16085828 [TBL] [Abstract][Full Text] [Related]
6. Quantitative 'Omics Analyses of Medium Chain Length Polyhydroxyalkanaote Metabolism in Pseudomonas putida LS46 Cultured with Waste Glycerol and Waste Fatty Acids. Fu J; Sharma P; Spicer V; Krokhin OV; Zhang X; Fristensky B; Cicek N; Sparling R; Levin DB PLoS One; 2015; 10(11):e0142322. PubMed ID: 26544181 [TBL] [Abstract][Full Text] [Related]
7. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
8. Role of β-oxidation and de novo fatty acid synthesis in the production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Gutiérrez-Gómez U; Servín-González L; Soberón-Chávez G Appl Microbiol Biotechnol; 2019 May; 103(9):3753-3760. PubMed ID: 30919102 [TBL] [Abstract][Full Text] [Related]
9. Enhanced production of polyhydroxyalkanoates in Pseudomonas putida KT2440 by a combination of genome streamlining and promoter engineering. Liu H; Chen Y; Zhang Y; Zhao W; Guo H; Wang S; Xia W; Wang S; Liu R; Yang C Int J Biol Macromol; 2022 Jun; 209(Pt A):117-124. PubMed ID: 35395277 [TBL] [Abstract][Full Text] [Related]
10. A promoter engineering-based strategy enhances polyhydroxyalkanoate production in Pseudomonas putida KT2440. Zhang Y; Liu H; Liu Y; Huo K; Wang S; Liu R; Yang C Int J Biol Macromol; 2021 Nov; 191():608-617. PubMed ID: 34582907 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous Improvements of Pseudomonas Cell Growth and Polyhydroxyalkanoate Production from a Lignin Derivative for Lignin-Consolidated Bioprocessing. Wang X; Lin L; Dong J; Ling J; Wang W; Wang H; Zhang Z; Yu X Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 30030226 [TBL] [Abstract][Full Text] [Related]
12. Kinetic understanding of nitrogen supply condition on biosynthesis of polyhydroxyalkanoate from benzoate by Pseudomonas putida KT2440. Xu Z; Li X; Hao N; Pan C; de la Torre L; Ahamed A; Miller JH; Ragauskas AJ; Yuan J; Yang B Bioresour Technol; 2019 Feb; 273():538-544. PubMed ID: 30472353 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of polyhydroxyalkanoates from vegetable oil under the co-expression of fadE and phaJ genes in Cupriavidus necator. Flores-Sánchez A; Rathinasabapathy A; López-Cuellar MDR; Vergara-Porras B; Pérez-Guevara F Int J Biol Macromol; 2020 Dec; 164():1600-1607. PubMed ID: 32768477 [TBL] [Abstract][Full Text] [Related]
14. Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. Vo MT; Lee KW; Jung YM; Lee YH J Biosci Bioeng; 2008 Jul; 106(1):95-8. PubMed ID: 18691538 [TBL] [Abstract][Full Text] [Related]
15. Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp in the production of polyhydroxyalkanoates. Davis R; Chandrashekar A; Shamala TR Antonie Van Leeuwenhoek; 2008 Mar; 93(3):285-96. PubMed ID: 17906975 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. Park SJ; Lee SY J Bacteriol; 2003 Sep; 185(18):5391-7. PubMed ID: 12949091 [TBL] [Abstract][Full Text] [Related]
17. Production of medium chain length polyhydroxyalkanoate from acetate by engineered Pseudomonas putida KT2440. Yang S; Li S; Jia X J Ind Microbiol Biotechnol; 2019 Jun; 46(6):793-800. PubMed ID: 30864026 [TBL] [Abstract][Full Text] [Related]
18. Overproduction of MCL-PHA with high 3-hydroxydecanoate Content. Gao J; Vo MT; Ramsay JA; Ramsay BA Biotechnol Bioeng; 2018 Feb; 115(2):390-400. PubMed ID: 29030961 [TBL] [Abstract][Full Text] [Related]
19. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. Le Meur S; Zinn M; Egli T; Thöny-Meyer L; Ren Q BMC Biotechnol; 2012 Aug; 12():53. PubMed ID: 22913372 [TBL] [Abstract][Full Text] [Related]
20. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Rehm BH; Mitsky TA; Steinbüchel A Appl Environ Microbiol; 2001 Jul; 67(7):3102-9. PubMed ID: 11425728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]