These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3676318)

  • 1. Leakage from egg phosphatidylcholine vesicles induced by Ca2+ and alcohols.
    Disalvo EA
    Biochim Biophys Acta; 1987 Nov; 905(1):9-16. PubMed ID: 3676318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-induced aggregation and fusion of mixed phosphatidylcholine-phosphatidic acid vesicles as studied by 31P NMR.
    Koter M; de Kruijff B; van Deenen LL
    Biochim Biophys Acta; 1978 Dec; 514(2):255-63. PubMed ID: 737172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface potential effects on metal ion binding to phosphatidylcholine membranes 31P NMR study of lanthanide and calcium ion binding to egg-yolk lecithin vesicles.
    Grasdalen H; Göran Eriksson LE; Westman J; Ehrenberg A
    Biochim Biophys Acta; 1977 Sep; 469(2):151-62. PubMed ID: 561615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipases. I. Effect of n-alkanols on the rate of enzymatic hydrolysis of egg phosphatidylcholine.
    Jain MK; Cordes EH
    J Membr Biol; 1973 Dec; 14(2):101-18. PubMed ID: 4359547
    [No Abstract]   [Full Text] [Related]  

  • 5. Ca2+-induced phosphatidylcholine vesicle aggregation in the presence of ferricyanide.
    Bakás LS; Disalvo EA
    Biochim Biophys Acta; 1988 Apr; 939(2):295-304. PubMed ID: 3128326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+ action on the stability of egg phosphatidylcholine sonicated vesicles during freeze-thaw cycles.
    Bakás LS; Disalvo EA
    Cryobiology; 1991 Jun; 28(3):279-87. PubMed ID: 1864084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-induced phase separation in phosphatidylserine, phosphatidylethanolamine and phosphatidylcholine mixed membranes.
    Tokutomi S; Lew R; Ohnishi S
    Biochim Biophys Acta; 1981 May; 643(2):276-82. PubMed ID: 6261813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of phosphatidylserine and mixed phosphatidylserine-phosphatidylcholine vesicles. Dependence on calcium concentration and temperature.
    Sun ST; Hsang CC; Day EP; Ho JT
    Biochim Biophys Acta; 1979 Oct; 557(1):45-52. PubMed ID: 549643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic study of aroxyl radical-scavenging action of vitamin E in membranes of egg yolk phosphatidylcholine vesicles.
    Fukuzawa K; Ouchi A; Shibata A; Nagaoka S; Mukai K
    Chem Phys Lipids; 2011 Mar; 164(3):205-10. PubMed ID: 21232533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of encapsulated Ca2+ on the surface properties of curved phosphatidylcholine bilayers.
    Bakás LS; Disalvo EA
    Biochim Biophys Acta; 1991 Jun; 1065(2):114-20. PubMed ID: 2059646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance study of the distribution of 2,2,6,6-tetramethylpiperidine-N-oxyl in phosphatidylcholine bilayers.
    Sillerud LO; Barnett RE
    Biochim Biophys Acta; 1977 Mar; 465(3):466-70. PubMed ID: 189814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced aggregation of phosphatidylcholine vesicles containing free oleic acid.
    Ortiz A; Gomez-Fernandez JC
    Chem Phys Lipids; 1988 Apr; 46(4):259-66. PubMed ID: 3365830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-electrolyte permeability as a tool for studying membrane fluidity.
    Van Zoelen EJ; Henriques de Jesus C; de Jonge E; Mulder M; Blok MC; de Gier J
    Biochim Biophys Acta; 1978 Aug; 511(3):335-47. PubMed ID: 687616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability against temperature and external agents of vesicles composed of archael bolaform lipids and egg PC.
    Fan Q; Relini A; Cassinadri D; Gambacorta A; Gliozzi A
    Biochim Biophys Acta; 1995 Nov; 1240(1):83-8. PubMed ID: 7495852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the asymmetric Ca2+ distribution on the bilayer properties of phosphatidylcholine-sonicated vesicles.
    Bakás LS; Disalvo EA
    Biochim Biophys Acta; 1989 Mar; 979(3):352-60. PubMed ID: 2923889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model transport studies utilizing lecithin spherules. I. Critical evaluations of several physical models in the determination of the permeability coefficient for glucose.
    Chowhan ZU; Yotsuyanagi T; Higuchi WI
    Biochim Biophys Acta; 1972 May; 266(2):320-42. PubMed ID: 5064533
    [No Abstract]   [Full Text] [Related]  

  • 17. The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers.
    Ly HV; Longo ML
    Biophys J; 2004 Aug; 87(2):1013-33. PubMed ID: 15298907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes.
    Düzgüneş N; Ohki S
    Biochim Biophys Acta; 1977 Jun; 467(3):301-8. PubMed ID: 884073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Special features of phosphatidylcholine vesicles as seen in cryo-transmission electron microscopy.
    Klösgen B; Helfrich W
    Eur Biophys J; 1993; 22(5):329-40. PubMed ID: 8112220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for two functionally different membrane fractions in bovine retinal rod outer segments.
    Bauer PJ
    J Physiol; 1988 Jul; 401():309-27. PubMed ID: 2845062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.