These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 3676332)
1. Enantiomeric specificity at the deacylation process of tryptic catalysis. Tanizawa K; Yamada H; Kanaoka Y Biochim Biophys Acta; 1987 Nov; 916(2):205-12. PubMed ID: 3676332 [TBL] [Abstract][Full Text] [Related]
2. Analysis of latent properties of trypsin. Acyl trypsins derived from enantiomeric pairs of "inverse substrates". Fujioka T; Tanizawa K; Kanaoka Y J Biochem; 1981 Feb; 89(2):637-43. PubMed ID: 7240132 [TBL] [Abstract][Full Text] [Related]
3. Differentiation of tryptic enzymes based on enantiomeric specificity at the deacylation step. Yamada H; Tanizawa K; Kanaoka Y FEBS Lett; 1988 Jan; 227(2):195-7. PubMed ID: 2962887 [TBL] [Abstract][Full Text] [Related]
4. Oxygen and sulfur esters of "inverse substrates": different responses of amidinophenol and amidinothiophenol in the activation of the rate of tryptic hydrolysis of the inverse esters. Tanizawa K; Kanaoka Y J Biochem; 1985 Jan; 97(1):275-80. PubMed ID: 3997793 [TBL] [Abstract][Full Text] [Related]
5. Fairly marked enantioselectivity for the hydrolysis of amino acid esters by chemically modified enzymes. Yano Y; Shimada K; Okai J; Goto K; Matsumoto Y; Ueoka R J Org Chem; 2003 Feb; 68(4):1314-8. PubMed ID: 12585870 [TBL] [Abstract][Full Text] [Related]
7. A novel chiral microenvironmental probe at the active site of trypsin. Extrinsic cotton effects of acyl-trypsin possessing an enantiomeric pair of chromophores. Nakayama H; Tanizawa K; Kanaoka Y; Witkop B Eur J Biochem; 1980 Nov; 112(2):403-9. PubMed ID: 7460930 [TBL] [Abstract][Full Text] [Related]
8. Induced activation in the deacylation step of tryptic hydrolysis. An application of "inverse substrates" to mechanistic studies of the enzyme. Tanizawa K; Kasaba Y; Kanaoka Y J Biochem; 1980 Feb; 87(2):417-27. PubMed ID: 7358646 [TBL] [Abstract][Full Text] [Related]
9. Inverse substrates: novel synthetic substrates for trypsin and related enzymes. Tanizawa K; Nakayama H; Fujioka T; Nozawa M; Nakaona M; Kanaoka Y Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(1):61-6. PubMed ID: 6177609 [TBL] [Abstract][Full Text] [Related]
10. Behavior of trypsin and related enzymes toward amidinophenyl esters. Nozawa M; Tanizawa K; Kanaoka Y; Moriya H J Pharmacobiodyn; 1981 Aug; 4(8):559-64. PubMed ID: 6457906 [TBL] [Abstract][Full Text] [Related]
11. A facile synthesis of p- and m-(amidinomethyl)phenyl esters derived from amino acid and tryptic hydrolysis of these synthetic inverse substrates. Sekizaki H; Itoh K; Shibuya A; Toyota E; Tanizawa K Chem Pharm Bull (Tokyo); 2007 Oct; 55(10):1514-7. PubMed ID: 17917298 [TBL] [Abstract][Full Text] [Related]
12. Kinetic studies on the mechanism and the specificity of peptide semisynthesis catalyzed by the serine proteases alpha-chymotrypsin and beta-trypsin. Riechmann L; Kasche V Biochem Biophys Res Commun; 1984 Apr; 120(2):686-91. PubMed ID: 6732779 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides. Sekizaki H; Itoh K; Toyota E; Tanizawa K Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1577-9. PubMed ID: 8795276 [TBL] [Abstract][Full Text] [Related]
14. Comparative studies on the structure of active sites. Behavior of "inverse substrates" toward trypsin and related enzymes. Nozawa M; Tanizawa K; Kanaoka Y J Biochem; 1982 Jun; 91(6):1837-43. PubMed ID: 6811567 [TBL] [Abstract][Full Text] [Related]
15. [Development of "inverse substrates" for trypsin. Application to the studies on the structure and function of the enzyme and to the design for biologically active compounds]. Tanizawa K Yakugaku Zasshi; 1985 May; 105(5):430-41. PubMed ID: 3162015 [No Abstract] [Full Text] [Related]
17. Essential roles of alkylammonium and alkylguanidinium ions in trypsin-catalyzed hydrolysis of acetylglycine esters: enhancement of catalytic efficiency analyzed by the use of "inverse substrates". Tanizawa K; Nakano M; Lawson WB; Kanaoka Y J Biochem; 1982 Sep; 92(3):945-51. PubMed ID: 7142128 [TBL] [Abstract][Full Text] [Related]
18. Anionic trypsin from chum salmon: activity with p-amidinophenyl ester and comparison with bovine and Streptomyces griseus trypsins. Sekizaki H; Itoh K; Murakami M; Toyota E; Tanizawa K Comp Biochem Physiol B Biochem Mol Biol; 2000 Nov; 127(3):337-46. PubMed ID: 11126764 [TBL] [Abstract][Full Text] [Related]
19. [The substrate specificity of trypsin. The interrelationship between the structure and reactivity for quasi-substrates, derivatives of O-alkylmethylphosphonic acid and carboxylic acids]. Klësov AA; Fedoseev VN; Kirret OG Biokhimiia; 1977 Nov; 42(11):1939-52. PubMed ID: 588630 [TBL] [Abstract][Full Text] [Related]
20. Resolution of chiral phosphate, phosphonate, and phosphinate esters by an enantioselective enzyme library. Nowlan C; Li Y; Hermann JC; Evans T; Carpenter J; Ghanem E; Shoichet BK; Raushel FM J Am Chem Soc; 2006 Dec; 128(49):15892-902. PubMed ID: 17147402 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]