These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36763454)

  • 21. A Deep Learning Model for Automated Sleep Stages Classification Using PSG Signals.
    Yildirim O; Baloglu UB; Acharya UR
    Int J Environ Res Public Health; 2019 Feb; 16(4):. PubMed ID: 30791379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and classification of epileptic EEG signals using invertible constant-
    Eltrass AS; Tayel MB; El-Qady AF
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541556
    [No Abstract]   [Full Text] [Related]  

  • 23. SleepContextNet: A temporal context network for automatic sleep staging based single-channel EEG.
    Zhao C; Li J; Guo Y
    Comput Methods Programs Biomed; 2022 Jun; 220():106806. PubMed ID: 35461126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An efficient automatic arousals detection algorithm in single channel EEG.
    Ugur TK; Erdamar A
    Comput Methods Programs Biomed; 2019 May; 173():131-138. PubMed ID: 31046987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Single-channel electroencephalogram signal used for sleep state recognition based on one-dimensional width kernel convolutional neural networks and long-short-term memory networks].
    Liang J; Zhou Q; Li W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Dec; 39(6):1089-1096. PubMed ID: 36575077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic classification of sleep stages using EEG signals and convolutional neural networks.
    Masad IS; Alqudah A; Qazan S
    PLoS One; 2024; 19(1):e0297582. PubMed ID: 38277364
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records.
    Garces Correa A; Laciar Leber E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1405-8. PubMed ID: 21096343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms.
    Al-Salman W; Li Y; Oudah AY; Almaged S
    Neurosci Res; 2023 Mar; 188():51-67. PubMed ID: 36152918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BTCRSleep: a boundary temporal context refinement-based fully convolutional network for sleep staging with single-channel EEG.
    Zhao C; Li J; Guo Y
    Physiol Meas; 2023 Jul; 44(7):. PubMed ID: 37267988
    [No Abstract]   [Full Text] [Related]  

  • 30. WaveSleepNet: An interpretable deep convolutional neural network for the continuous classification of mouse sleep and wake.
    Kam K; Rapoport DM; Parekh A; Ayappa I; Varga AW
    J Neurosci Methods; 2021 Aug; 360():109224. PubMed ID: 34052291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning].
    Tian Y; Zhou Q; Li W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Apr; 40(2):286-294. PubMed ID: 37139760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic sleep stage classification: A light and efficient deep neural network model based on time, frequency and fractional Fourier transform domain features.
    You Y; Zhong X; Liu G; Yang Z
    Artif Intell Med; 2022 May; 127():102279. PubMed ID: 35430040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An attention-based temporal convolutional network for rodent sleep stage classification across species, mutants and experimental environments with single-channel electroencephalogram.
    Liu Y; Yang Z; You Y; Shan W; Ban W
    Physiol Meas; 2022 Aug; 43(8):. PubMed ID: 35927982
    [No Abstract]   [Full Text] [Related]  

  • 34. Deep convolutional neural network for classification of sleep stages from single-channel EEG signals.
    Mousavi Z; Yousefi Rezaii T; Sheykhivand S; Farzamnia A; Razavi SN
    J Neurosci Methods; 2019 Aug; 324():108312. PubMed ID: 31201824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic Sleep Stage Classification using Marginal Hilbert Spectrum Features and a Convolutional Neural Network.
    Wang W; Liao P; Sun Y; Su G; Ye S; Liu Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():625-628. PubMed ID: 33018065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification.
    Ji X; Li Y; Wen P
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1464-1472. PubMed ID: 35584068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sleep staging algorithm based on multichannel data adding and multifeature screening.
    Huang W; Guo B; Shen Y; Tang X; Zhang T; Li D; Jiang Z
    Comput Methods Programs Biomed; 2020 Apr; 187():105253. PubMed ID: 31812884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.
    Zhang J; Wu Y
    Biomed Tech (Berl); 2018 Mar; 63(2):177-190. PubMed ID: 28222011
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Convolution-and Attention-Based Neural Network for Automated Sleep Stage Classification.
    Zhu T; Luo W; Yu F
    Int J Environ Res Public Health; 2020 Jun; 17(11):. PubMed ID: 32532084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Deep Shared Multi-Scale Inception Network Enables Accurate Neonatal Quiet Sleep Detection With Limited EEG Channels.
    Ansari AH; Pillay K; Dereymaeker A; Jansen K; Van Huffel S; Naulaers G; De Vos M
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):1023-1033. PubMed ID: 34329177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.