These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36763504)

  • 1. Responses of Rat Mesenchymal Stromal Cells to Nanocellulose with Different Functional Groups.
    Rashad A; Grøndahl M; Heggset EB; Mustafa K; Syverud K
    ACS Appl Bio Mater; 2023 Mar; 6(3):987-998. PubMed ID: 36763504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells.
    Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K
    Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and Antibacterial Properties of Autoclaved Carboxylated Wood Nanocellulose.
    Chinga-Carrasco G; Johansson J; Heggset EB; Leirset I; Björn C; Agrenius K; Stevanic JS; Håkansson J
    Biomacromolecules; 2021 Jul; 22(7):2779-2789. PubMed ID: 34185505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.
    Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K
    Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers.
    Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H
    NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds.
    Rashad A; Suliman S; Mustafa M; Pedersen TØ; Campodoni E; Sandri M; Syverud K; Mustafa K
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():208-221. PubMed ID: 30678905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane.
    Kim GH; Kang DH; Jung BN; Shim JK
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytocompatibility and osteogenic differentiation of stem cells from human exfoliated deciduous teeth with cotton cellulose nanofibers for tissue engineering and regenerative medicine.
    Zanette RSS; Fayer L; de Oliveira ER; Almeida CG; Oliveira CR; de Oliveira LFC; Maranduba CMC; Alvarenga ÉC; Brandão HM; Munk M
    J Biomater Sci Polym Ed; 2022 Apr; 33(5):627-650. PubMed ID: 34807809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils.
    Aimonen K; Imani M; Hartikainen M; Suhonen S; Vanhala E; Moreno C; Rojas OJ; Norppa H; Catalán J
    Part Fibre Toxicol; 2022 Mar; 19(1):19. PubMed ID: 35296350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineralization potential of cellulose-nanofibrils reinforced gelatine scaffolds for promoted calcium deposition by mesenchymal stem cells.
    Gorgieva S; Girandon L; Kokol V
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():478-489. PubMed ID: 28183635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of biomimetic zinc-containing tricalcium phosphate (Zn-TCP) on the growth and osteogenic differentiation of mesenchymal stem cells.
    Chou J; Hao J; Hatoyama H; Ben-Nissan B; Milthorpe B; Otsuka M
    J Tissue Eng Regen Med; 2015 Jul; 9(7):852-8. PubMed ID: 24737707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopy.
    Kotov N; Larsson PA; Jain K; Abitbol T; Cernescu A; Wågberg L; Johnson CM
    Carbohydr Polym; 2023 Feb; 302():120320. PubMed ID: 36604038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of extracellular matrix proteins on the differentiation of human pluripotent stem cells into mesenchymal stem cells.
    Tian Z; Wang CK; Lin FL; Liu Q; Wang T; Sung TC; Alarfaj AA; Hirad AH; Lee HH; Wu GJ; Higuchi A
    J Mater Chem B; 2022 Aug; 10(30):5723-5732. PubMed ID: 35791836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling of TEMPO-mediated oxidation medium and its effect on nanocellulose properties.
    Xu H; Sanchez-Salvador JL; Blanco A; Balea A; Negro C
    Carbohydr Polym; 2023 Nov; 319():121168. PubMed ID: 37567710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypyrrole thin films formed by admicellar polymerization support the osteogenic differentiation of mesenchymal stem cells.
    Castano H; O'Rear EA; McFetridge PS; Sikavitsas VI
    Macromol Biosci; 2004 Aug; 4(8):785-94. PubMed ID: 15468272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Assembly of Nanocellulose Hydrogels Mimicking Bacterial Cellulose for Wound Dressing Applications.
    Berglund L; Squinca P; Baş Y; Zattarin E; Aili D; Rakar J; Junker J; Starkenberg A; Diamanti M; Sivlér P; Skog M; Oksman K
    Biomacromolecules; 2023 May; 24(5):2264-2277. PubMed ID: 37097826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of laminin, polylysine and cell medium components on the attachment of human hepatocellular carcinoma cells to cellulose nanofibrils analyzed by surface plasmon resonance.
    Zhang X; Viitala T; Harjumäki R; Kartal-Hodzic A; Valle-Delgado JJ; Österberg M
    J Colloid Interface Sci; 2021 Feb; 584():310-319. PubMed ID: 33069029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties.
    Hassan SH; Velayutham TS; Chen YW; Lee HV
    Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis.
    Zhang J; Dalbay MT; Luo X; Vrij E; Barbieri D; Moroni L; de Bruijn JD; van Blitterswijk CA; Chapple JP; Knight MM; Yuan H
    Acta Biomater; 2017 Jul; 57():487-497. PubMed ID: 28456657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells cultured with hardystonite (Ca2ZnSi 2O7) and {beta}-TCP ceramics.
    Lu H; Kawazoe N; Tateishi T; Chen G; Jin X; Chang J
    J Biomater Appl; 2010 Jul; 25(1):39-56. PubMed ID: 19726532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.