BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

765 related articles for article (PubMed ID: 3676355)

  • 1. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinates transformation and learning control for visually-guided voluntary movement with iteration: a Newton-like method in a function space.
    Kawato M; Isobe M; Maeda Y; Suzuki R
    Biol Cybern; 1988; 59(3):161-77. PubMed ID: 3179342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Motor Control Learned with Deep Deterministic Policy Gradient.
    Shi H; Sun Y; Li J
    Comput Intell Neurosci; 2018; 2018():8535429. PubMed ID: 29666634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Associative neural network model for the generation of temporal patterns. Theory and application to central pattern generators.
    Kleinfeld D; Sompolinsky H
    Biophys J; 1988 Dec; 54(6):1039-51. PubMed ID: 3233265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural systems for control of voluntary action--a hypothesis.
    Hikosaka O
    Adv Biophys; 1998; 35():81-102. PubMed ID: 9949766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational model of four regions of the cerebellum based on feedback-error learning.
    Kawato M; Gomi H
    Biol Cybern; 1992; 68(2):95-103. PubMed ID: 1486143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems.
    Hirashima M; Nozaki D
    PLoS Comput Biol; 2012; 8(6):e1002590. PubMed ID: 22761568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation.
    Garrido JA; Luque NR; D'Angelo E; Ros E
    Front Neural Circuits; 2013; 7():159. PubMed ID: 24130518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feed-forward associative learning for volitional movement control.
    Fujita M
    Neurosci Res; 2005 Jun; 52(2):153-65. PubMed ID: 15893576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
    Davidson PR; Jones RD; Andreae JH; Sirisena HR
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1242-52. PubMed ID: 12450354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A dynamical neural network model for motor cortical activity during movement: population coding of movement trajectories.
    Lukashin AV; Georgopoulos AP
    Biol Cybern; 1993; 69(5-6):517-24. PubMed ID: 8274549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
    Chadderdon GL; Neymotin SA; Kerr CC; Lytton WW
    PLoS One; 2012; 7(10):e47251. PubMed ID: 23094042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cerebellum and VOR/OKR learning models.
    Kawato M; Gomi H
    Trends Neurosci; 1992 Nov; 15(11):445-53. PubMed ID: 1281352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visuomotor transformations underlying arm movements toward visual targets: a neural network model of cerebral cortical operations.
    Burnod Y; Grandguillaume P; Otto I; Ferraina S; Johnson PB; Caminiti R
    J Neurosci; 1992 Apr; 12(4):1435-53. PubMed ID: 1556602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.