BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

762 related articles for article (PubMed ID: 3676355)

  • 21. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The problem of redundancy in movement control: the adaptive model theory approach.
    Neilson PD
    Psychol Res; 1993; 55(2):99-106. PubMed ID: 8395065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Useful properties of spinal circuits for learning and performing planar reaches.
    Tsianos GA; Goodner J; Loeb GE
    J Neural Eng; 2014 Oct; 11(5):056006. PubMed ID: 25082652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain.
    Virkar YS; Shew WL; Restrepo JG; Ott E
    Phys Rev E; 2016 Oct; 94(4-1):042310. PubMed ID: 27841512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of noise on the function of a "physiological" neural network.
    Buhmann J; Schulten K
    Biol Cybern; 1987; 56(5-6):313-27. PubMed ID: 3620531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A critical evaluation of the force control hypothesis in motor control.
    Ostry DJ; Feldman AG
    Exp Brain Res; 2003 Dec; 153(3):275-88. PubMed ID: 14610628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control.
    Schweighofer N; Arbib MA; Kawato M
    Eur J Neurosci; 1998 Jan; 10(1):86-94. PubMed ID: 9753116
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies.
    Dehghani S; Bahrami F
    PLoS One; 2020; 15(2):e0228726. PubMed ID: 32023300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis in vitro: dynamics and plasticity of a neuro-robotic system.
    Karniel A; Kositsky M; Fleming KM; Chiappalone M; Sanguineti V; Alford ST; Mussa-Ivaldi FA
    J Neural Eng; 2005 Sep; 2(3):S250-65. PubMed ID: 16135888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
    Tabata H; Yamamoto K; Kawato M
    J Neurophysiol; 2002 Apr; 87(4):2176-89. PubMed ID: 11929935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.
    Dornay M; Sanger TD
    Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.
    Beyeler M; Dutt ND; Krichmar JL
    Neural Netw; 2013 Dec; 48():109-24. PubMed ID: 23994510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse models.
    Katayama M; Kawato M
    Biol Cybern; 1993; 69(5-6):353-62. PubMed ID: 8274536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stochastic models of neuronal dynamics.
    Harrison LM; David O; Friston KJ
    Philos Trans R Soc Lond B Biol Sci; 2005 May; 360(1457):1075-91. PubMed ID: 16087449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A theory of cerebellar cortex and adaptive motor control based on two types of universal function approximation capability.
    Fujita M
    Neural Netw; 2016 Mar; 75():173-96. PubMed ID: 26799130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neural control of rotational kinematics within realistic vestibuloocular coordinate systems.
    Smith MA; Crawford JD
    J Neurophysiol; 1998 Nov; 80(5):2295-315. PubMed ID: 9819244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tensor network theory of the metaorganization of functional geometries in the central nervous system.
    Pellionisz A; Llinás R
    Neuroscience; 1985 Oct; 16(2):245-73. PubMed ID: 4080158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.