These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

763 related articles for article (PubMed ID: 3676355)

  • 41. Emergence of Coordinated Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control.
    Athalye VR; Ganguly K; Costa RM; Carmena JM
    Neuron; 2017 Feb; 93(4):955-970.e5. PubMed ID: 28190641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. MODEM: a multi-agent hierarchical structure to model the human motor control system.
    Emadi Andani M; Bahrami F; Jabehdar Maralani P; Ijspeert AJ
    Biol Cybern; 2009 Dec; 101(5-6):361-77. PubMed ID: 19862548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.
    Michaels JA; Dann B; Scherberger H
    PLoS Comput Biol; 2016 Nov; 12(11):e1005175. PubMed ID: 27814352
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2014; 8():131. PubMed ID: 25414644
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tracking Neural Modulation Depth by Dual Sequential Monte Carlo Estimation on Point Processes for Brain-Machine Interfaces.
    Wang Y; She X; Liao Y; Li H; Zhang Q; Zhang S; Zheng X; Principe J
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1728-41. PubMed ID: 26584486
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A reevaluation of the inverse dynamic model for eye movements.
    Green AM; Meng H; Angelaki DE
    J Neurosci; 2007 Feb; 27(6):1346-55. PubMed ID: 17287509
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning.
    Kappel D; Legenstein R; Habenschuss S; Hsieh M; Maass W
    eNeuro; 2018; 5(2):. PubMed ID: 29696150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity.
    Yamamoto K; Kobayashi Y; Takemura A; Kawano K; Kawato M
    J Neurophysiol; 2002 Mar; 87(3):1554-71. PubMed ID: 11877526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.
    Buckley CL; Toyoizumi T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005926. PubMed ID: 29342146
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spike-timing-dependent plasticity for neurons with recurrent connections.
    Burkitt AN; Gilson M; van Hemmen JL
    Biol Cybern; 2007 May; 96(5):533-46. PubMed ID: 17415586
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerebellar learning of accurate predictive control for fast-reaching movements.
    Spoelstra J; Schweighofer N; Arbib MA
    Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cross-talk induces bifurcations in nonlinear models of synaptic plasticity.
    Elliott T
    Neural Comput; 2012 Feb; 24(2):455-522. PubMed ID: 22023195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations.
    Srinivasa N; Cho Y
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1526-38. PubMed ID: 24807999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Learning arm kinematics and dynamics.
    Atkeson CG
    Annu Rev Neurosci; 1989; 12():157-83. PubMed ID: 2648948
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cortical correlates of learning in monkeys adapting to a new dynamical environment.
    Gandolfo F; Li C; Benda BJ; Schioppa CP; Bizzi E
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):2259-63. PubMed ID: 10681435
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Model for a flexible motor memory based on a self-active recurrent neural network.
    Boström KJ; Wagner H; Prieske M; de Lussanet M
    Hum Mov Sci; 2013 Oct; 32(5):880-98. PubMed ID: 24120277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.