These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 36763569)
1. Tuning CO Reddy KP; Kim D; Hong S; Kim KJ; Ryoo R; Park JY ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763569 [TBL] [Abstract][Full Text] [Related]
2. Probing the Reaction Mechanism in CO Ren Y; Xin C; Hao Z; Sun H; Bernasek SL; Chen W; Xu GQ ACS Appl Mater Interfaces; 2020 Jan; 12(2):2548-2554. PubMed ID: 31850736 [TBL] [Abstract][Full Text] [Related]
3. Enhanced Catalytic Performance for Hydrogenation of Substituted Nitroaromatics over Ir-Based Bimetallic Nanocatalysts. Yu H; Tang W; Li K; Zhao S; Yin H; Zhou S ACS Appl Mater Interfaces; 2019 Feb; 11(7):6958-6969. PubMed ID: 30674185 [TBL] [Abstract][Full Text] [Related]
4. CO Wang L; Etim UJ; Zhang C; Amirav L; Zhong Z Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893495 [TBL] [Abstract][Full Text] [Related]
5. Ni Bao S; Liu T; Fu H; Xu Z; Qu X; Zheng S; Zhu D ACS Appl Mater Interfaces; 2023 Oct; 15(39):45949-45959. PubMed ID: 37748196 [TBL] [Abstract][Full Text] [Related]
6. Hydrogenation of MTHPA to MHHPA over Ni-based catalysts: Al Pu J; Liu C; Shi S; Yun J RSC Adv; 2022 Nov; 12(53):34268-34281. PubMed ID: 36545590 [TBL] [Abstract][Full Text] [Related]
7. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose. Liang G; He L; Arai M; Zhao F ChemSusChem; 2014 May; 7(5):1415-21. PubMed ID: 24664493 [TBL] [Abstract][Full Text] [Related]
8. Comparative Spectroscopic Study Revealing Why the CO El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316 [TBL] [Abstract][Full Text] [Related]
9. Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction. Deng L; Ai X; Xie F; Zhou G Chem Asian J; 2021 Apr; 16(8):949-958. PubMed ID: 33646609 [TBL] [Abstract][Full Text] [Related]
10. Structure Sensitivity of CO Simons JFM; de Heer TJ; van de Poll RCJ; Muravev V; Kosinov N; Hensen EJM J Am Chem Soc; 2023 Sep; 145(37):20289-20301. PubMed ID: 37677099 [TBL] [Abstract][Full Text] [Related]
12. Surface Segregation in CuNi Nanoparticle Catalysts During CO Zegkinoglou I; Pielsticker L; Han ZK; Divins NJ; Kordus D; Chen YT; Escudero C; Pérez-Dieste V; Zhu B; Gao Y; Cuenya BR J Phys Chem C Nanomater Interfaces; 2019 Apr; 123(13):8421-8428. PubMed ID: 30976377 [TBL] [Abstract][Full Text] [Related]
13. Ni-Cu and Ni-Co-Modified Fly Ash Zeolite Catalysts for Hydrodeoxygenation of Levulinic Acid to γ-Valerolactone. Popova M; Dimitrov M; Boycheva S; Dimitrov I; Ublekov F; Koseva N; Atanasova G; Karashanova D; Szegedi Á Molecules; 2023 Dec; 29(1):. PubMed ID: 38202681 [TBL] [Abstract][Full Text] [Related]
14. Revealing the anti-sintering phenomenon on silica-supported nickel catalysts during CO Yang L; Pu T; Tian F; He Y; Zhu M J Environ Sci (China); 2024 Jun; 140():270-278. PubMed ID: 38331507 [TBL] [Abstract][Full Text] [Related]
15. Zr-Based MOF-545 Metal-Organic Framework Loaded with Highly Dispersed Small Size Ni Nanoparticles for CO Chen H; Brubach JB; Tran NH; Robinson AL; Romdhane FB; Frégnaux M; Penas-Hidalgo F; Solé-Daura A; Mialane P; Fontecave M; Dolbecq A; Mellot-Draznieks C ACS Appl Mater Interfaces; 2024 Mar; 16(10):12509-12520. PubMed ID: 38415586 [TBL] [Abstract][Full Text] [Related]
16. Synergistic Effects of Alloying and Thiolate Modification in Furfural Hydrogenation over Cu-Based Catalysts. Pang SH; Love NE; Medlin JW J Phys Chem Lett; 2014 Dec; 5(23):4110-4. PubMed ID: 26278941 [TBL] [Abstract][Full Text] [Related]
17. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Boucher MB; Zugic B; Cladaras G; Kammert J; Marcinkowski MD; Lawton TJ; Sykes EC; Flytzani-Stephanopoulos M Phys Chem Chem Phys; 2013 Aug; 15(29):12187-96. PubMed ID: 23793350 [TBL] [Abstract][Full Text] [Related]
18. Optimizing Active Sites for High CO Selectivity during CO Galhardo TS; Braga AH; Arpini BH; Szanyi J; Gonçalves RV; Zornio BF; Miranda CR; Rossi LM J Am Chem Soc; 2021 Mar; 143(11):4268-4280. PubMed ID: 33661617 [TBL] [Abstract][Full Text] [Related]
19. In situ IR spectroscopic studies of Ni surface segregation induced by CO adsorption on Cu-Ni/SiO2 bimetallic catalysts. Yao Y; Goodman DW Phys Chem Chem Phys; 2014 Feb; 16(8):3823-9. PubMed ID: 24435048 [TBL] [Abstract][Full Text] [Related]
20. Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO Li Y; Cai X; Chen S; Zhang H; Zhang KHL; Hong J; Chen B; Kuo DH; Wang W ChemSusChem; 2018 Mar; 11(6):1040-1047. PubMed ID: 29424046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]