These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 36763637)
1. Comparison of the dynamics of exoskeletal-assisted and unassisted locomotion in an FDA-approved lower extremity device: Controlled experiments and development of a subject-specific virtual simulator. Chandran VD; Nam S; Hexner D; Bauman WA; Pal S PLoS One; 2023; 18(2):e0270078. PubMed ID: 36763637 [TBL] [Abstract][Full Text] [Related]
2. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals. Hayes SC; White M; White HSF; Vanicek N Clin Biomech (Bristol); 2020 Dec; 80():105133. PubMed ID: 32777685 [TBL] [Abstract][Full Text] [Related]
3. Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury. Hornby TG; Kinnaird CR; Holleran CL; Rafferty MR; Rodriguez KS; Cain JB Phys Ther; 2012 Oct; 92(10):1278-91. PubMed ID: 22700537 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern. Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827 [TBL] [Abstract][Full Text] [Related]
6. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
7. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control. Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
9. Exploring Human-Exoskeleton Interaction Dynamics: An In-Depth Analysis of Knee Flexion-Extension Performance across Varied Robot Assistance-Resistance Configurations. Mosconi D; Moreno Y; Siqueira A Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676262 [TBL] [Abstract][Full Text] [Related]
10. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. Kim SK; Park D; Yoo B; Shim D; Choi JO; Choi TY; Park ES Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33809758 [TBL] [Abstract][Full Text] [Related]
11. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking? Knaepen K; Mierau A; Swinnen E; Fernandez Tellez H; Michielsen M; Kerckhofs E; Lefeber D; Meeusen R PLoS One; 2015; 10(10):e0140626. PubMed ID: 26485148 [TBL] [Abstract][Full Text] [Related]
12. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
14. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance. Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931 [TBL] [Abstract][Full Text] [Related]
15. Kinematics study of a 10 degrees-of-freedom lower extremity exoskeleton for crutch-less walking rehabilitation. Liu J; He Y; Li F; Cao W; Wu X Technol Health Care; 2022; 30(3):747-755. PubMed ID: 34486995 [TBL] [Abstract][Full Text] [Related]
16. Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches. Smith AJJ; Fournier BN; Nantel J; Lemaire ED J Biomech; 2020 Jun; 107():109835. PubMed ID: 32517865 [TBL] [Abstract][Full Text] [Related]
17. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. Chang SR; Nandor MJ; Li L; Kobetic R; Foglyano KM; Schnellenberger JR; Audu ML; Pinault G; Quinn RD; Triolo RJ J Neuroeng Rehabil; 2017 May; 14(1):48. PubMed ID: 28558835 [TBL] [Abstract][Full Text] [Related]
18. Leg surface electromyography patterns in children with neuro-orthopedic disorders walking on a treadmill unassisted and assisted by a robot with and without encouragement. Aurich Schuler T; Müller R; van Hedel HJ J Neuroeng Rehabil; 2013 Jul; 10():78. PubMed ID: 23867005 [TBL] [Abstract][Full Text] [Related]
19. An Anthropometrically Parameterized Assistive Lower Limb Exoskeleton. Laubscher CA; Farris RJ; van den Bogert AJ; Sawicki JT J Biomech Eng; 2021 Oct; 143(10):. PubMed ID: 34008845 [TBL] [Abstract][Full Text] [Related]
20. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator. Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]