These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36763656)

  • 1. Nanowire photochemical diodes for artificial photosynthesis.
    Andrei V; Roh I; Yang P
    Sci Adv; 2023 Feb; 9(6):eade9044. PubMed ID: 36763656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiconductor-Electrocatalyst Interfaces: Theory, Experiment, and Applications in Photoelectrochemical Water Splitting.
    Nellist MR; Laskowski FA; Lin F; Mills TJ; Boettcher SW
    Acc Chem Res; 2016 Apr; 49(4):733-40. PubMed ID: 27035051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.
    Pang H; Masuda T; Ye J
    Chem Asian J; 2018 Jan; 13(2):127-142. PubMed ID: 29193762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganometallic Photocatalyst for CO
    Son HJ; Pac C; Kang SO
    Acc Chem Res; 2021 Dec; 54(24):4530-4544. PubMed ID: 34881862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-nanowire photoelectrochemistry.
    Su Y; Liu C; Brittman S; Tang J; Fu A; Kornienko N; Kong Q; Yang P
    Nat Nanotechnol; 2016 Jul; 11(7):609-12. PubMed ID: 27018660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All inorganic semiconductor nanowire mesh for direct solar water splitting.
    Liu B; Wu CH; Miao J; Yang P
    ACS Nano; 2014 Nov; 8(11):11739-44. PubMed ID: 25365141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting.
    Thalluri SM; Bai L; Lv C; Huang Z; Hu X; Liu L
    Adv Sci (Weinh); 2020 Mar; 7(6):1902102. PubMed ID: 32195077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin oxide layers for nanoscale integration of molecular light absorbers, catalysts, and complete artificial photosystems.
    Katsoukis G; Frei H
    J Chem Phys; 2019 Jan; 150(4):041501. PubMed ID: 30709321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoelectrochemical devices for solar water splitting - materials and challenges.
    Jiang C; Moniz SJA; Wang A; Zhang T; Tang J
    Chem Soc Rev; 2017 Jul; 46(15):4645-4660. PubMed ID: 28644493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and synthesis of freestanding photoelectric nanodevices as highly efficient photocatalysts.
    Qu Y; Liao L; Cheng R; Wang Y; Lin YC; Huang Y; Duan X
    Nano Lett; 2010 May; 10(5):1941-9. PubMed ID: 20373781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solar-Driven CO
    Morikawa T; Sato S; Sekizawa K; Suzuki TM; Arai T
    Acc Chem Res; 2022 Apr; 55(7):933-943. PubMed ID: 34851099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction.
    Kong Q; Kim D; Liu C; Yu Y; Su Y; Li Y; Yang P
    Nano Lett; 2016 Sep; 16(9):5675-80. PubMed ID: 27494433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies.
    Reyes Cruz EA; Nishiori D; Wadsworth BL; Nguyen NP; Hensleigh LK; Khusnutdinova D; Beiler AM; Moore GF
    Chem Rev; 2022 Nov; 122(21):16051-16109. PubMed ID: 36173689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterointegration of Pt/Si/Ag Nanowire Photodiodes and Their Photocatalytic Properties.
    Qu Y; Xue T; Zhong X; Lin YC; Liao L; Choi J; Duan X
    Adv Funct Mater; 2010 Sep; 20(18):3005-3011. PubMed ID: 21629399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.