These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36763797)

  • 1. Quantum Mechanical-Cluster Approach to Solve the Bioisosteric Replacement Problem in Drug Design.
    Losev TV; Gerasimov IS; Panova MV; Lisov AA; Abdyusheva YR; Rusina PV; Zaletskaya E; Stroganov OV; Medvedev MG; Novikov FN
    J Chem Inf Model; 2023 Feb; 63(4):1239-1248. PubMed ID: 36763797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic and molecular properties of nonclassical bioisosteric replacements of the carboxylic acid group.
    Arabi AA
    Future Med Chem; 2020 Jun; 12(12):1111-1120. PubMed ID: 32400198
    [No Abstract]   [Full Text] [Related]  

  • 3. Computer-aided drug design, quantum-mechanical methods for biological problems.
    Manathunga M; Götz AW; Merz KM
    Curr Opin Struct Biol; 2022 Aug; 75():102417. PubMed ID: 35779437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances toward a general purpose linear-scaling quantum force field.
    Giese TJ; Huang M; Chen H; York DM
    Acc Chem Res; 2014 Sep; 47(9):2812-20. PubMed ID: 24937206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling pyranose ring pucker in carbohydrates using machine learning and semi-empirical quantum chemical methods.
    Kong L; Bryce RA
    J Comput Chem; 2022 Nov; 43(30):2009-2022. PubMed ID: 36165294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Isostere Database: a web-based tool using quantum chemical topology to predict bioisosteric replacements for drug design.
    Devereux M; Popelier PL; McLay IM
    J Chem Inf Model; 2009 Jun; 49(6):1497-513. PubMed ID: 19453153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioisosteric Replacement and Scaffold Hopping in Lead Generation and Optimization.
    Langdon SR; Ertl P; Brown N
    Mol Inform; 2010 May; 29(5):366-85. PubMed ID: 27463193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C
    Villot C; Ballesteros F; Wang D; Lao KU
    J Phys Chem A; 2022 Jul; 126(27):4326-4341. PubMed ID: 35766331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum and Classical Evaluations of Carboxylic Acid Bioisosteres: From Capped Moieties to a Drug Molecule.
    Osman AMA; Arabi AA
    ACS Omega; 2023 Jan; 8(1):588-598. PubMed ID: 36643455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioisoIdentifier: an online free tool to investigate local structural replacements from PDB.
    Zhang T; Sun S; Wang R; Li T; Gan B; Zhang Y
    J Cheminform; 2024 Jan; 16(1):7. PubMed ID: 38218937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Routes to drug design via bioisosterism of carboxyl and sulfonamide groups.
    Arabi AA
    Future Med Chem; 2017 Dec; 9(18):2167-2180. PubMed ID: 29120240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioisosteric matrices for ligands of serotonin receptors.
    Warszycki D; Mordalski S; Staroń J; Bojarski AJ
    ChemMedChem; 2015 Apr; 10(4):601-5. PubMed ID: 25772514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Quantum Mechanical and Molecular Mechanical Methods for Calculating Potential Energy Surfaces: Tuned and Balanced Redistributed-Charge Algorithm.
    Wang B; Truhlar DG
    J Chem Theory Comput; 2010 Feb; 6(2):359-69. PubMed ID: 26617295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantum chemical approach to biological reaction with a theory of solutions.
    Takahashi H
    Front Biosci (Landmark Ed); 2009 Jan; 14(5):1745-60. PubMed ID: 19273159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MB-Isoster: A software for bioisosterism simulation.
    Elias TC; de Oliveira HCB; da Silveira NJF
    J Comput Chem; 2018 Nov; 39(29):2481-2487. PubMed ID: 30318630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Basis of the Interaction of Cyclin-Dependent Kinase 2 with Roscovitine and Its Analogues Having Bioisosteric Central Heterocycles.
    Nekardová M; Vymětalová L; Khirsariya P; Kováčová S; Hylsová M; Jorda R; Kryštof V; Fanfrlík J; Hobza P; Paruch K
    Chemphyschem; 2017 Apr; 18(7):785-795. PubMed ID: 28128514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessment of QM-based and MM-based models for prediction of protein-ligand binding affinity trends.
    Maier S; Thapa B; Erickson J; Raghavachari K
    Phys Chem Chem Phys; 2022 Jun; 24(23):14525-14537. PubMed ID: 35661842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum mechanical methods for drug design.
    Zhou T; Huang D; Caflisch A
    Curr Top Med Chem; 2010; 10(1):33-45. PubMed ID: 19929831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using DFT methodology for more reliable predictive models: Design of inhibitors of Golgi α-Mannosidase II.
    Bobovská A; Tvaroška I; Kóňa J
    J Mol Graph Model; 2016 May; 66():47-57. PubMed ID: 27035259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Accuracy of QM/MM Models: A Systematic Study of Intramolecular Proton Transfer Reactions of Amino Acids in Water.
    Chen J; Kato J; Harper JB; Shao Y; Ho J
    J Phys Chem B; 2021 Aug; 125(32):9304-9316. PubMed ID: 34355564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.