These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 36763975)
1. Spontaneous Takeoff of Single Sulfur Nanoparticles during Sublimation Studied by Dark-Field Microscopy. Liu S; Li H; Fang S; Xu W; Hu W; Wang W J Am Chem Soc; 2023 Feb; ():. PubMed ID: 36763975 [TBL] [Abstract][Full Text] [Related]
2. Final fate of a Leidenfrost droplet: Explosion or takeoff. Lyu S; Mathai V; Wang Y; Sobac B; Colinet P; Lohse D; Sun C Sci Adv; 2019 May; 5(5):eaav8081. PubMed ID: 31058224 [TBL] [Abstract][Full Text] [Related]
4. Leidenfrost Effect as a Directed Percolation Phase Transition. Chantelot P; Lohse D Phys Rev Lett; 2021 Sep; 127(12):124502. PubMed ID: 34597096 [TBL] [Abstract][Full Text] [Related]
5. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets. Ok JT; Choi J; Brown E; Park S Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527 [TBL] [Abstract][Full Text] [Related]
6. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature. Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835 [TBL] [Abstract][Full Text] [Related]
7. Leidenfrost point reduction on micropatterned metallic surfaces. del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737 [TBL] [Abstract][Full Text] [Related]
8. Self-excitation of Leidenfrost drops and consequences on their stability. Bouillant A; Cohen C; Clanet C; Quéré D Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34155101 [TBL] [Abstract][Full Text] [Related]
9. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions. Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652 [TBL] [Abstract][Full Text] [Related]
13. Geometry of the vapor layer under a leidenfrost drop. Burton JC; Sharpe AL; van der Veen RC; Franco A; Nagel SR Phys Rev Lett; 2012 Aug; 109(7):074301. PubMed ID: 23006372 [TBL] [Abstract][Full Text] [Related]
15. Effect of surface topography and wettability on the Leidenfrost effect. Zhong L; Guo Z Nanoscale; 2017 May; 9(19):6219-6236. PubMed ID: 28470271 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Leidenfrost Effect: Relevant Time and Length Scales. Shirota M; van Limbeek MA; Sun C; Prosperetti A; Lohse D Phys Rev Lett; 2016 Feb; 116(6):064501. PubMed ID: 26918994 [TBL] [Abstract][Full Text] [Related]
17. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath. Gauthier A; Diddens C; Proville R; Lohse D; van der Meer D Proc Natl Acad Sci U S A; 2019 Jan; 116(4):1174-1179. PubMed ID: 30617076 [TBL] [Abstract][Full Text] [Related]
18. Delayed Leidenfrost Effect of a Cutting Droplet on a Microgrooved Tool Surface. Guo Y; Liu X; Ji J; Wang Z; Hu X; Zhu Y; Zhang T; Tao T; Liu K; Jiao Y Langmuir; 2023 Jul; 39(28):9648-9659. PubMed ID: 37390023 [TBL] [Abstract][Full Text] [Related]
19. Low Friction Droplet Transportation on a Substrate with a Selective Leidenfrost Effect. Dodd LE; Wood D; Geraldi NR; Wells GG; McHale G; Xu BB; Stuart-Cole S; Martin J; Newton MI ACS Appl Mater Interfaces; 2016 Aug; 8(34):22658-63. PubMed ID: 27482833 [TBL] [Abstract][Full Text] [Related]
20. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen. Adda-Bedia M; Kumar S; Lechenault F; Moulinet S; Schillaci M; Vella D Langmuir; 2016 May; 32(17):4179-88. PubMed ID: 27054550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]