These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36763985)

  • 21. All-Solution-Processed WO
    Lee BR; Lee MG; Park H; Lee TH; Lee SA; Bhat SSM; Kim C; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20004-20012. PubMed ID: 31083922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flexible BiVO
    Shao PW; Siao YS; Lai YH; Hsieh PY; Tsao CW; Lu YJ; Chen YC; Hsu YJ; Chu YH
    ACS Appl Mater Interfaces; 2021 May; 13(18):21186-21193. PubMed ID: 33905241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous BiVO
    Huang J; Meng A; Zhang Z; Ma G; Long Y; Li X; Han P; He B
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014462
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D WO
    Zhang H; Zhou W; Yang Y; Cheng C
    Small; 2017 Apr; 13(16):. PubMed ID: 28165199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting.
    Feng X; Chen Y; Qin Z; Wang M; Guo L
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18089-96. PubMed ID: 27347739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced Photoelectrochemical Water Splitting with Er- and W-Codoped Bismuth Vanadate with WO
    Prasad U; Prakash J; Gupta SK; Zuniga J; Mao Y; Azeredo B; Kannan ANM
    ACS Appl Mater Interfaces; 2019 May; 11(21):19029-19039. PubMed ID: 31062583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting.
    Li F; Yang H; Zhuo Q; Zhou D; Wu X; Zhang P; Yao Z; Sun L
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1976-1985. PubMed ID: 33051952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unleashing the power of solar light: WO
    Singla S; Devi P; Basu S
    Environ Sci Pollut Res Int; 2023 Nov; 30(52):112290-112306. PubMed ID: 37831241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multichannel Charge Transport of a BiVO
    Zhang Z; Chen B; Baek M; Yong K
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6218-6227. PubMed ID: 29377671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unveiling the Effects of Nanostructures and Core Materials on Charge-Transport Dynamics in Heterojunction Electrodes for Photoelectrochemical Water Splitting.
    Kim K; Yang J; Moon JH
    ACS Appl Mater Interfaces; 2020 May; 12(19):21894-21902. PubMed ID: 32366085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serial hole transfer layers for a BiVO
    Li L; Li J; Bai J; Zeng Q; Xia L; Zhang Y; Chen S; Xu Q; Zhou B
    Nanoscale; 2018 Oct; 10(38):18378-18386. PubMed ID: 30256370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrochemical aptasensing of oxytetracycline based on a BiVO
    Shen Y; Sun C; Chen M; Du Y; Cheng J; Li Y; Xie Q
    Mikrochim Acta; 2023 Apr; 190(5):193. PubMed ID: 37103619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Photoelectrochemical Water Oxidation Performance by Fluorine Incorporation in BiVO
    Rohloff M; Anke B; Kasian O; Zhang S; Lerch M; Scheu C; Fischer A
    ACS Appl Mater Interfaces; 2019 May; 11(18):16430-16442. PubMed ID: 31017393
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrafast fabrication of highly active BiVO
    Kim JH; Jo YH; Kim JH; Lee JS
    Nanoscale; 2016 Oct; 8(40):17623-17631. PubMed ID: 27714102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes.
    Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of a W:BiVO
    Song A; Bogdanoff P; Esau A; Ahmet IY; Levine I; Dittrich T; Unold T; van de Krol R; Berglund SP
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):13959-13970. PubMed ID: 32096970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of an Efficient BiVO4-TiO2 Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Cheng BY; Yang JS; Cho HW; Wu JJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20032-9. PubMed ID: 27454929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Green fabrication of nanoporous BiVO
    Okunaka S; Hitomi Y; Tokudome H
    RSC Adv; 2018 Sep; 8(55):31575-31580. PubMed ID: 35548238
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes.
    Jeon TH; Choi W; Park H
    Phys Chem Chem Phys; 2011 Dec; 13(48):21392-401. PubMed ID: 22042046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient photoelectrochemical water oxidation using a TiO
    Jiang W; Jiang Y; Tong J; Zhang Q; Li S; Tong H; Xia L
    RSC Adv; 2018 Dec; 8(72):41439-41444. PubMed ID: 35559331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.