These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 36763988)

  • 1. Connected Droplet Shape Analysis for Nanoflow Quantification in Thin Electroosmotic Micropumps and a Tunable Convex Lens Application.
    Kare SS; Ramkumar PK; Gao Y; Xu J; Finan JD
    Langmuir; 2023 Feb; 39(7):2569-2578. PubMed ID: 36763988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic flow control on charged phospholipid polymer interface.
    Xu Y; Takai M; Konno T; Ishihara K
    Lab Chip; 2007 Feb; 7(2):199-206. PubMed ID: 17268622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A liquid metal based, integrated parallel electroosmotic micropump cluster drive system.
    Li Q; Zhang P; Ye Z; Zhang H; Sun X; Gui L
    Lab Chip; 2024 Feb; 24(4):896-903. PubMed ID: 38263786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of particle-deposition pattern in a sessile droplet by using radial electroosmotic flow.
    Kim SJ; Kang KH; Lee JG; Kang IS; Yoon BJ
    Anal Chem; 2006 Jul; 78(14):5192-7. PubMed ID: 16841947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A handy liquid metal based electroosmotic flow pump.
    Gao M; Gui L
    Lab Chip; 2014 Jun; 14(11):1866-72. PubMed ID: 24706096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.
    Sureda M; Miller A; Diez FJ
    Electrophoresis; 2012 Sep; 33(17):2759-68. PubMed ID: 22965723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes.
    Gao M; Gui L
    Micromachines (Basel); 2016 Sep; 7(9):. PubMed ID: 30404339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.
    Salari A; Navi M; Dalton C
    Biomicrofluidics; 2015 Jan; 9(1):014113. PubMed ID: 25713695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a High Flow Rate 3-D Electroosmotic Flow Pump.
    Ye Z; Zhang R; Gao M; Deng Z; Gui L
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30754641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmotic Flow in Microchannel with Black Silicon Nanostructures.
    Lim AE; Lim CY; Lam YC; Taboryski R
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of 3D electrodes arrangement in a novel AC electroosmotic micropump: Numerical modeling and experimental validation.
    Tavari T; Meamardoost S; Sepehry N; Akbarzadeh P; Nazari M; Hashemi NN; Nazari M
    Electrophoresis; 2023 Feb; 44(3-4):450-461. PubMed ID: 36448415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel.
    Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR
    Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nanoliter resolution implantable micropump for murine inner ear drug delivery.
    Forouzandeh F; Zhu X; Alfadhel A; Ding B; Walton JP; Cormier D; Frisina RD; Borkholder DA
    J Control Release; 2019 Mar; 298():27-37. PubMed ID: 30690105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-induced electroosmotic flow in microfluidic capillaries.
    Azadi G; Tripathi A
    Electrophoresis; 2012 Jul; 33(14):2094-101. PubMed ID: 22821484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate Solution for Electroosmotic Flow of Power-Law Fluids in a Planar Microchannel with Asymmetric Electrochemical Boundary Conditions.
    Choi W; Yun S; Choi DS
    Micromachines (Basel); 2018 May; 9(6):. PubMed ID: 30424198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.
    Fu X; Mavrogiannis N; Doria S; Gagnon Z
    Lab Chip; 2015 Sep; 15(17):3600-8. PubMed ID: 26053965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces.
    Choi DS; Yun S; Choi W
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH Change in Electroosmotic Flow Hysteresis.
    Lim CY; Lim AE; Lam YC
    Anal Chem; 2017 Sep; 89(17):9394-9399. PubMed ID: 28737036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous microfluidic control by chemically actuated micropumps and its application to chemical analyses.
    Takashima A; Kojima K; Suzuki H
    Anal Chem; 2010 Aug; 82(16):6870-6. PubMed ID: 20669895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.