BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36764009)

  • 1. Modulation of narrow-field amacrine cells on light-evoked spike responses and receptive fields of retinal ganglion cells.
    Seilheimer RL; McClard CK; Sabharwal J; Wu SM
    Vision Res; 2023 Apr; 205():108186. PubMed ID: 36764009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycinergic and GABAergic interneurons shift the location and differentially alter the size of ganglion cell receptive field centers in the mammalian retina.
    Long Y; Seilheimer RL; Wu SM
    Vision Res; 2020 May; 170():18-24. PubMed ID: 32217368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light responses and amacrine cell modulation of morphologically-identified retinal ganglion cells in the mouse retina.
    Pang JJ; Gao F; Wu SM
    Vision Res; 2023 Apr; 205():108187. PubMed ID: 36758452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina.
    Seilheimer RL; Sabharwal J; Wu SM
    Vision Res; 2020 Feb; 167():15-23. PubMed ID: 31887538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses and receptive fields of amacrine cells and ganglion cells in the salamander retina.
    Zhang AJ; Wu SM
    Vision Res; 2010 Mar; 50(6):614-22. PubMed ID: 20085780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of glycinergic neurons in the diminished surround activity of ganglion cells in the dark-adapted rabbit retina.
    Jensen RJ
    Vis Neurosci; 1991 Jan; 6(1):43-53. PubMed ID: 1851036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina.
    Bloomfield SA
    J Neurophysiol; 1996 May; 75(5):1878-93. PubMed ID: 8734587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Receptive field organization of retinal ganglion cells in the spastic mutant mouse.
    Stone C; Pinto LH
    J Physiol; 1992 Oct; 456():125-42. PubMed ID: 1338094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surround inhibition of mammalian AII amacrine cells is generated in the proximal retina.
    Bloomfield SA; Xin D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):771-83. PubMed ID: 10718754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina.
    Crook JD; Davenport CM; Peterson BB; Packer OS; Detwiler PB; Dacey DM
    J Neurosci; 2009 Jul; 29(26):8372-87. PubMed ID: 19571128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-evoked synaptic activity of retinal ganglion and amacrine cells is regulated in developing mouse retina.
    He Q; Wang P; Tian N
    Eur J Neurosci; 2011 Jan; 33(1):36-48. PubMed ID: 21091802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields.
    Cowan CS; Sabharwal J; Wu SM
    Physiol Rep; 2016 Sep; 4(17):. PubMed ID: 27604400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory components of retinal bipolar cell receptive fields are differentially modulated by dopamine D1 receptors.
    Mazade RE; Eggers ED
    Vis Neurosci; 2020 Feb; 37():E01. PubMed ID: 32046810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The projective field of a retinal amacrine cell.
    de Vries SE; Baccus SA; Meister M
    J Neurosci; 2011 Jun; 31(23):8595-604. PubMed ID: 21653863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action potentials are required for the lateral transmission of glycinergic transient inhibition in the amphibian retina.
    Cook PB; Lukasiewicz PD; McReynolds JS
    J Neurosci; 1998 Mar; 18(6):2301-8. PubMed ID: 9482814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response dynamics and receptive-field organization of catfish ganglion cells.
    Sakai HM; Naka K
    J Gen Physiol; 1995 Jun; 105(6):795-814. PubMed ID: 7561744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ON Crossover Circuitry Shapes Spatiotemporal Profile in the Center and Surround of Mouse OFF Retinal Ganglion Cells.
    Sabharwal J; Seilheimer RL; Cowan CS; Wu SM
    Front Neural Circuits; 2016; 10():106. PubMed ID: 28066192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine differentially affects retinal circuits to shape the retinal code.
    Warwick RA; Heukamp AS; Riccitelli S; Rivlin-Etzion M
    J Physiol; 2023 Apr; 601(7):1265-1286. PubMed ID: 36807203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response dynamics and receptive-field organization of catfish amacrine cells.
    Sakai HM; Naka K
    J Neurophysiol; 1992 Feb; 67(2):430-42. PubMed ID: 1569468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.