BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36764293)

  • 1. A molecular device for the redox quality control of GroEL/ES substrates.
    Dupuy E; Van der Verren SE; Lin J; Wilson MA; Dachsbeck AV; Viela F; Latour E; Gennaris A; Vertommen D; DufrĂȘne YF; Iorga BI; Goemans CV; Remaut H; Collet JF
    Cell; 2023 Mar; 186(5):1039-1049.e17. PubMed ID: 36764293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CnoX Is a Chaperedoxin: A Holdase that Protects Its Substrates from Irreversible Oxidation.
    Goemans CV; Vertommen D; Agrebi R; Collet JF
    Mol Cell; 2018 May; 70(4):614-627.e7. PubMed ID: 29754824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate.
    Taguchi H
    J Mol Biol; 2015 Sep; 427(18):2912-8. PubMed ID: 25900372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Chaperone and Redox Properties of CnoX Chaperedoxins Are Tailored to the Proteostatic Needs of Bacterial Species.
    Goemans CV; Beaufay F; Arts IS; Agrebi R; Vertommen D; Collet JF
    mBio; 2018 Nov; 9(6):. PubMed ID: 30482828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperonin: Co-chaperonin Interactions.
    Boshoff A
    Subcell Biochem; 2023; 101():213-246. PubMed ID: 36520309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaperonin-co-chaperonin interactions.
    Boshoff A
    Subcell Biochem; 2015; 78():153-78. PubMed ID: 25487021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL.
    Sivinski J; Ambrose AJ; Panfilenko I; Zerio CJ; Machulis JM; Mollasalehi N; Kaneko LK; Stevens M; Ray AM; Park Y; Wu C; Hoang QQ; Johnson SM; Chapman E
    mBio; 2021 Jan; 12(1):. PubMed ID: 33436430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical Properties of the Mammalian Molecular Chaperone HSP60.
    Ishida R; Okamoto T; Motojima F; Kubota H; Takahashi H; Tanabe M; Oka T; Kitamura A; Kinjo M; Yoshida M; Otaka M; Grave E; Itoh H
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29415503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding.
    Hayer-Hartl M; Bracher A; Hartl FU
    Trends Biochem Sci; 2016 Jan; 41(1):62-76. PubMed ID: 26422689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GroEL and the GroEL-GroES Complex.
    Ishii N
    Subcell Biochem; 2017; 83():483-504. PubMed ID: 28271487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein folding assisted by the GroEL/GroES chaperonin system.
    Martin J
    Biochemistry (Mosc); 1998 Apr; 63(4):374-81. PubMed ID: 9556520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin.
    Yoda H; Koike-Takeshita A
    Microscopy (Oxf); 2021 Jun; 70(3):289-296. PubMed ID: 33173948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular chaperone GroEL/ES: unfolding and refolding processes.
    Ryabova NA; Marchenkov VV; Marchenkova SY; Kotova NV; Semisotnov GV
    Biochemistry (Mosc); 2013 Dec; 78(13):1405-14. PubMed ID: 24490731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional structure and physiological functions of mammalian wild-type HSP60.
    Okamoto T; Ishida R; Yamamoto H; Tanabe-Ishida M; Haga A; Takahashi H; Takahashi K; Goto D; Grave E; Itoh H
    Arch Biochem Biophys; 2015 Nov; 586():10-9. PubMed ID: 26427351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexibility of GroES mobile loop is required for efficient chaperonin function.
    Nojima T; Ikegami T; Taguchi H; Yoshida M
    J Mol Biol; 2012 Sep; 422(2):291-9. PubMed ID: 22634549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversal by GroES of the GroEL preference from hydrophobic amino acids toward hydrophilic amino acids.
    de Crouy-Chanel A; el Yaagoubi A; Kohiyama M; Richarme G
    J Biol Chem; 1995 May; 270(18):10571-5. PubMed ID: 7737993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP hydrolysis.
    Hayer-Hartl MK; Weber F; Hartl FU
    EMBO J; 1996 Nov; 15(22):6111-21. PubMed ID: 8947033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved and divergent chaperoning effects of Hsp60/10 chaperonins on protein folding landscapes.
    Sadat A; Tiwari S; Sunidhi S; Chaphalkar A; Kochar M; Ali M; Zaidi Z; Sharma A; Verma K; Narayana Rao KB; Tripathi M; Ghosh A; Gautam D; Atul ; Ray A; Mapa K; Chakraborty K
    Proc Natl Acad Sci U S A; 2022 May; 119(18):e2118465119. PubMed ID: 35486698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of an archaeal GroEL/GroES chaperonin system: significance of substrate encapsulation.
    Figueiredo L; Klunker D; Ang D; Naylor DJ; Kerner MJ; Georgopoulos C; Hartl FU; Hayer-Hartl M
    J Biol Chem; 2004 Jan; 279(2):1090-9. PubMed ID: 14576149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.