These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 3676435)

  • 21. Phagocytic properties and organelle motility of pulmonary macrophages from smokers and nonsmokers estimated in vitro by magnetometric means.
    Im Hof V; Klauser M; Gehr P
    Eur Respir J; 1990 Feb; 3(2):157-62. PubMed ID: 2311741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A viscoelastic model of phagosome motion within cells based on cytomagnetometric measurements.
    Nemoto I; Moeller W
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):170-82. PubMed ID: 10721624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.
    Vereda F; de Vicente J; Hidalgo-Alvarez R
    Chemphyschem; 2009 Jun; 10(8):1165-79. PubMed ID: 19434654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unusual magnetism in templated NiS nanoparticles.
    Barry L; Holmes JD; Otway DJ; Copley MP; Kazakova O; Morris MA
    J Phys Condens Matter; 2010 Feb; 22(7):076001. PubMed ID: 21386398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo comparison of cat alveolar and pulmonary intravascular macrophages: phagocytosis, particle clearance, and cytoplasmic motility.
    Molina RM; Brain JD
    Exp Lung Res; 2007 Mar; 33(2):53-70. PubMed ID: 17454102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidal transport on magnetic garnet films.
    Tierno P; Sagués F; Johansen TH; Fischer TM
    Phys Chem Chem Phys; 2009 Nov; 11(42):9615-25. PubMed ID: 19851538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurements of the quantities of particles accumulated in the lungs of workers.
    Muluaka M; Zheng Y; Kotani M; Uchikawa Y
    Front Med Biol Eng; 1997; 8(4):287-94. PubMed ID: 9801883
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stingless bee antennae: a magnetic sensory organ?
    Lucano MJ; Cernicchiaro G; Wajnberg E; Esquivel DM
    Biometals; 2006 Jun; 19(3):295-300. PubMed ID: 16799867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic susceptibilities of an assembly of dipolar particles in an elastic environment.
    Raikher YL; Rusakov VV; Coffey WT; Kalmykov YP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 1):031402. PubMed ID: 11308649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.
    Holzinger D; Koch I; Burgard S; Ehresmann A
    ACS Nano; 2015 Jul; 9(7):7323-31. PubMed ID: 26134922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetoanalysis of micro/nanoparticles: a review.
    Suwa M; Watarai H
    Anal Chim Acta; 2011 Apr; 690(2):137-47. PubMed ID: 21435469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magnetically controlled rotation and torque of uniaxial microactuators for lab-on-a-chip applications.
    Ranzoni A; Janssen XJ; Ovsyanko M; van IJzendoorn LJ; Prins MW
    Lab Chip; 2010 Jan; 10(2):179-88. PubMed ID: 20066245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological properties and particle behaviors of a nondilute colloidal dispersion composed of ferromagnetic spherocylinder particles subjected to a simple shear flow: analysis by means of mean-field approximation for the two typical external magnetic field directions.
    Watanabe T; Aoshima M; Satoh A
    J Colloid Interface Sci; 2006 Oct; 302(1):347-55. PubMed ID: 16814313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of magnetic interactions between clusters on particle orientational characteristics and viscosity of a colloidal dispersion composed of ferromagnetic spherocylinder particles: analysis by means of mean field approximation for a simple shear flow.
    Satoh A
    J Colloid Interface Sci; 2005 Sep; 289(1):276-85. PubMed ID: 16009234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors affecting magnetic retention of particles in the upper airways: an in vitro and ex vivo study.
    Ally J; Amirfazli A; Roa W
    J Aerosol Med; 2006; 19(4):491-509. PubMed ID: 17196078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ferromagnetic contamination in the lungs and other organs of the human body.
    Cohen D
    Science; 1973 May; 180(4087):745-8. PubMed ID: 4702572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-fluidic actuation using magnetic artificial cilia.
    Fahrni F; Prins MW; van Ijzendoorn LJ
    Lab Chip; 2009 Dec; 9(23):3413-21. PubMed ID: 19904409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel magnetophoretic-based device for magnetometry and separation of single magnetic particles and magnetized cells.
    Abedini-Nassab R; Ding X; Xie H
    Lab Chip; 2022 Feb; 22(4):738-746. PubMed ID: 35040849
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ring-chain structural transitions in a ferromagnetic particles system induced by a dc magnetic field.
    Morimoto H; Katano K; Maekawa T
    J Chem Phys; 2009 Jul; 131(3):034905. PubMed ID: 19624231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for predicting magnetic particle capture in a microfluidic bioseparator.
    Furlani EP; Sahoo Y; Ng KC; Wortman JC; Monk TE
    Biomed Microdevices; 2007 Aug; 9(4):451-63. PubMed ID: 17516176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.