These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36764618)
21. Floating aquatic macrophytes for the treatment of aquaculture effluents. de Vasconcelos VM; de Morais ERC; Faustino SJB; Hernandez MCR; Gaudêncio HRDSC; de Melo RR; Bessa Junior AP Environ Sci Pollut Res Int; 2021 Jan; 28(3):2600-2607. PubMed ID: 33125679 [TBL] [Abstract][Full Text] [Related]
23. Fate of methane in aquatic systems dominated by free-floating plants. Kosten S; Piñeiro M; de Goede E; de Klein J; Lamers LPM; Ettwig K Water Res; 2016 Nov; 104():200-207. PubMed ID: 27525583 [TBL] [Abstract][Full Text] [Related]
24. Nutrient and organic matter removal from low strength sewage treated with constructed wetlands. Mello D; Carvalho KQ; Passig FH; Freire FB; Borges AC; Lima MX; Marcelino GR Environ Technol; 2019 Jan; 40(1):11-18. PubMed ID: 28891384 [TBL] [Abstract][Full Text] [Related]
25. Understanding the bacterial community structure associated with the Eichhornia crassipes rootzone. Singh CK; Sodhi KK; Singh DK Mol Biol Rep; 2023 Dec; 51(1):35. PubMed ID: 38157124 [TBL] [Abstract][Full Text] [Related]
26. Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations. Jayaweera MW; Dilhani JA; Kularatne RK; Wijeyekoon SL J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):925-32. PubMed ID: 17558773 [TBL] [Abstract][Full Text] [Related]
27. Optimization of organic matter degradation kinetics and nutrient removal on artificial wetlands using Eichhornia crassipes and Typha domingensis. Rangel-Peraza JG; Mendivil-García K; Cedillo-Herrera CIG; Rochín-Medina JJ; Rodríguez-Mata AE; Bustos-Terrones YA Environ Technol; 2019 Feb; 40(5):633-641. PubMed ID: 29096581 [TBL] [Abstract][Full Text] [Related]
28. [Water purification of four aquatic plant species with the presence of iron-carbon interior electrolytic substrates.]. Zong XX; Min MY; Sun GF; Li N; An SQ; Leng X Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2084-2090. PubMed ID: 29737114 [TBL] [Abstract][Full Text] [Related]
29. Summer methane emissions from sewage water-fed tropical shallow aquaculture ponds characterized by different water depths. Shaher S; Chanda A; Das S; Das I; Giri S; Samanta S; Hazra S; Mukherjee AD Environ Sci Pollut Res Int; 2020 May; 27(15):18182-18195. PubMed ID: 32170622 [TBL] [Abstract][Full Text] [Related]
30. Greenhouse gas emissions from waste stabilisation ponds in Western Australia and Quebec (Canada). Glaz P; Bartosiewicz M; Laurion I; Reichwaldt ES; Maranger R; Ghadouani A Water Res; 2016 Sep; 101():64-74. PubMed ID: 27258617 [TBL] [Abstract][Full Text] [Related]
31. Dual phytoremediation and biochar production by Ibrahiem H; Ismail GSM; Migahid MM; Ghazy MA; Nasr M Int J Phytoremediation; 2024; 26(4):546-556. PubMed ID: 37667465 [TBL] [Abstract][Full Text] [Related]
32. Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Ekanayake MS; Udayanga D; Wijesekara I; Manage P Environ Sci Pollut Res Int; 2021 Apr; 28(16):20476-20486. PubMed ID: 33410027 [TBL] [Abstract][Full Text] [Related]
33. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium. Anudechakul C; Vangnai AS; Ariyakanon N Int J Phytoremediation; 2015; 17(7):678-85. PubMed ID: 25976881 [TBL] [Abstract][Full Text] [Related]
34. Growth characteristics and nutrient removal capability of eco-ditch plants in mesocosm sediment receiving primary domestic wastewater. Kumwimba MN; Zhu B; Muyembe DK; Dzakpasu M Environ Sci Pollut Res Int; 2017 Oct; 24(30):23926-23938. PubMed ID: 28875404 [TBL] [Abstract][Full Text] [Related]
35. Role of heavy metal tolerant rhizosphere bacteria in the phytoremediation of Cu and Pb using Kabeer R; V P S; C S PK; A P T; V S; E K R; K R B Int J Phytoremediation; 2022; 24(11):1120-1132. PubMed ID: 34846266 [TBL] [Abstract][Full Text] [Related]
36. Can we use Cd-contaminated macrophytes for biogas production? Fernandes KD; Cañote SJB; Ribeiro EM; Thiago Filho GL; Fonseca AL Environ Sci Pollut Res Int; 2019 Sep; 26(27):27620-27630. PubMed ID: 29948672 [TBL] [Abstract][Full Text] [Related]
37. Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Wang F; Gao J; Zhai W; Cui J; Hua Y; Zhou Z; Liu D; Wang P; Zhang H Ecotoxicol Environ Saf; 2021 Aug; 219():112236. PubMed ID: 33989919 [TBL] [Abstract][Full Text] [Related]
38. The Water Hyacinth Microbiome: Link Between Carbon Turnover and Nutrient Cycling. Ávila MP; Oliveira-Junior ES; Reis MP; Hester ER; Diamantino C; Veraart AJ; Lamers LPM; Kosten S; Nascimento AMA Microb Ecol; 2019 Oct; 78(3):575-588. PubMed ID: 30706113 [TBL] [Abstract][Full Text] [Related]
39. Coupling of submerged macrophytes and epiphytic biofilms reduced methane emissions from wetlands: Evidenced by an antibiotic inhibition experiment. Lu J; Mu X; Zhang S; Song Y; Ma Y; Luo M; Duan R Sci Total Environ; 2023 Dec; 904():166710. PubMed ID: 37652383 [TBL] [Abstract][Full Text] [Related]
40. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Akinbile CO; Yusoff MS Int J Phytoremediation; 2012 Mar; 14(3):201-11. PubMed ID: 22567705 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]