BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36764926)

  • 1. Fragment-based deep molecular generation using hierarchical chemical graph representation and multi-resolution graph variational autoencoder.
    Gao Z; Wang X; Blumenfeld Gaines B; Shi X; Bi J; Song M
    Mol Inform; 2023 May; 42(5):e2200215. PubMed ID: 36764926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-principled deep generative models for designing drug combinations as graph sets.
    Karimi M; Hasanzadeh A; Shen Y
    Bioinformatics; 2020 Jul; 36(Suppl_1):i445-i454. PubMed ID: 32657357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is fragment-based graph a better graph-based molecular representation for drug design? A comparison study of graph-based models.
    Chen B; Pan Z; Mou M; Zhou Y; Fu W
    Comput Biol Med; 2024 Feb; 169():107811. PubMed ID: 38168647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-sample dual-decoder graph autoencoder.
    He M; Zhao Q; Zhang H
    Methods; 2023 Mar; 211():31-41. PubMed ID: 36792041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.
    Zhang Y; Xiong S; Wang Z; Liu Y; Luo H; Li B; Zou Q
    Methods; 2023 May; 213():1-9. PubMed ID: 36933628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks.
    Hu C; Li S; Yang C; Chen J; Xiong Y; Fan G; Liu H; Hong L
    J Cheminform; 2023 Oct; 15(1):91. PubMed ID: 37794460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HiGNN: A Hierarchical Informative Graph Neural Network for Molecular Property Prediction Equipped with Feature-Wise Attention.
    Zhu W; Zhang Y; Zhao D; Xu J; Wang L
    J Chem Inf Model; 2023 Jan; 63(1):43-55. PubMed ID: 36519623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation.
    Kwon Y; Yoo J; Choi YS; Son WJ; Lee D; Kang S
    J Cheminform; 2019 Nov; 11(1):70. PubMed ID: 33430985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small molecule generation via disentangled representation learning.
    Du Y; Guo X; Wang Y; Shehu A; Zhao L
    Bioinformatics; 2022 Jun; 38(12):3200-3208. PubMed ID: 35511125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressed graph representation for scalable molecular graph generation.
    Kwon Y; Lee D; Choi YS; Shin K; Kang S
    J Cheminform; 2020 Sep; 12(1):58. PubMed ID: 33431050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Molecular Representations Via Graph Transformation Layers.
    Ren GP; Wu KJ; He Y
    J Chem Inf Model; 2023 May; 63(9):2679-2688. PubMed ID: 37104828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry-Based Molecular Generation With Deep Constrained Variational Autoencoder.
    Li C; Yao J; Wei W; Niu Z; Zeng X; Li J; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Apr; 35(4):4852-4861. PubMed ID: 35171779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generative chemistry: drug discovery with deep learning generative models.
    Bian Y; Xie XQ
    J Mol Model; 2021 Feb; 27(3):71. PubMed ID: 33543405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph-based generative models for de Novo drug design.
    Xia X; Hu J; Wang Y; Zhang L; Liu Z
    Drug Discov Today Technol; 2019 Dec; 32-33():45-53. PubMed ID: 33386094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FAME: Fragment-based Conditional Molecular Generation for Phenotypic Drug Discovery.
    Pham TH; Xie L; Zhang P
    Proc SIAM Int Conf Data Min; 2022; 2022():720-728. PubMed ID: 35509686
    [No Abstract]   [Full Text] [Related]  

  • 16. BatmanNet: bi-branch masked graph transformer autoencoder for molecular representation.
    Wang Z; Feng Z; Li Y; Li B; Wang Y; Sha C; He M; Li X
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38033291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?
    D'Souza S; Kv P; Balaji S
    Expert Opin Drug Discov; 2022 Oct; 17(10):1071-1079. PubMed ID: 36216812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means.
    Hadipour H; Liu C; Davis R; Cardona ST; Hu P
    BMC Bioinformatics; 2022 Apr; 23(Suppl 4):132. PubMed ID: 35428173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction.
    Xuan P; Fan M; Cui H; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34718408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning.
    Mukaidaisi M; Vu A; Grantham K; Tchagang A; Li Y
    Front Pharmacol; 2022; 13():920747. PubMed ID: 35860028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.