BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36765054)

  • 1. A conserved tooth resorption mechanism in modern and fossil snakes.
    LeBlanc ARH; Palci A; Anthwal N; Tucker AS; Araújo R; Pereira MFC; Caldwell MW
    Nat Commun; 2023 Feb; 14(1):742. PubMed ID: 36765054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mosasaurs and snakes have a periodontal ligament: timing and extent of calcification, not tissue complexity, determines tooth attachment mode in reptiles.
    LeBlanc ARH; Lamoureux DO; Caldwell MW
    J Anat; 2017 Dec; 231(6):869-885. PubMed ID: 28901023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara).
    Jones ME; Anderson CL; Hipsley CA; Müller J; Evans SE; Schoch RR
    BMC Evol Biol; 2013 Sep; 13():208. PubMed ID: 24063680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.
    Hsiang AY; Field DJ; Webster TH; Behlke AD; Davis MB; Racicot RA; Gauthier JA
    BMC Evol Biol; 2015 May; 15():87. PubMed ID: 25989795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What makes a fang? Phylogenetic and ecological controls on tooth evolution in rear-fanged snakes.
    Westeen EP; Durso AM; Grundler MC; Rabosky DL; Davis Rabosky AR
    BMC Evol Biol; 2020 Jul; 20(1):80. PubMed ID: 32646372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New skulls and skeletons of the Cretaceous legged snake
    Garberoglio FF; Apesteguía S; Simões TR; Palci A; Gómez RO; Nydam RL; Larsson HCE; Lee MSY; Caldwell MW
    Sci Adv; 2019 Nov; 5(11):eaax5833. PubMed ID: 31799393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene.
    Scanlon JD
    Nature; 2006 Feb; 439(7078):839-42. PubMed ID: 16482156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cretaceous terrestrial snake with robust hindlimbs and a sacrum.
    Apesteguía S; Zaher H
    Nature; 2006 Apr; 440(7087):1037-40. PubMed ID: 16625194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.
    Caldwell MW; Nydam RL; Palci A; Apesteguía S
    Nat Commun; 2015 Jan; 6():5996. PubMed ID: 25625704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grooves to tubes: evolution of the venom delivery system in a Late Triassic "reptile".
    Mitchell JS; Heckert AB; Sues HD
    Naturwissenschaften; 2010 Dec; 97(12):1117-21. PubMed ID: 21060984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Varanoid Tooth Eruption and Implantation Modes in a Late Cretaceous Mosasaur.
    Liu M; Reed DA; Cecchini GM; Lu X; Ganjawalla K; Gonzales CS; Monahan R; Luan X; Diekwisch TG
    Front Physiol; 2016; 7():145. PubMed ID: 27242535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergent and lineage-specific genomic differences in limb regulatory elements in limbless reptile lineages.
    Roscito JG; Sameith K; Kirilenko BM; Hecker N; Winkler S; Dahl A; Rodrigues MT; Hiller M
    Cell Rep; 2022 Jan; 38(3):110280. PubMed ID: 35045302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.
    Martill DM; Tischlinger H; Longrich NR
    Science; 2015 Jul; 349(6246):416-9. PubMed ID: 26206932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tikiguania and the antiquity of squamate reptiles (lizards and snakes).
    Hutchinson MN; Skinner A; Lee MS
    Biol Lett; 2012 Aug; 8(4):665-9. PubMed ID: 22279152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ecophysiological steps of marine adaptation in extant and extinct non-avian tetrapods.
    Motani R; Vermeij GJ
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):1769-1798. PubMed ID: 33904243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the snake body form reveals homoplasy in amniote Hox gene function.
    Head JJ; Polly PD
    Nature; 2015 Apr; 520(7545):86-9. PubMed ID: 25539083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of the South American fossil squamates.
    Albino AM; Brizuela S
    Anat Rec (Hoboken); 2014 Mar; 297(3):349-68. PubMed ID: 24482358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into skull evolution in fossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea).
    Strong CRC; Palci A; Caldwell MW
    J Anat; 2021 Jan; 238(1):146-172. PubMed ID: 32815172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Appendages and gene regulatory networks: Lessons from the limbless.
    Infante CR; Rasys AM; Menke DB
    Genesis; 2018 Jan; 56(1):. PubMed ID: 29076617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes.
    Leal F; Cohn MJ
    Genesis; 2018 Jan; 56(1):. PubMed ID: 29095557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.