These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36765166)

  • 21. A Review on Technologies for Localisation and Navigation in Autonomous Railway Maintenance Systems.
    Rahimi M; Liu H; Cardenas ID; Starr A; Hall A; Anderson R
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intelligent Image-Based Railway Inspection System Using Deep Learning-Based Object Detection and Weber Contrast-Based Image Comparison.
    Jang J; Shin M; Lim S; Park J; Kim J; Paik J
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Semantic Segmentation of Terrestrial Laser Scans of Railway Catenary Arches: A Use Case Perspective.
    Ton B; Ahmed F; Linssen J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Image Generation and Recognition for Railway Surface Defect Detection.
    Xia Y; Han SW; Kwon HJ
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Study on Railway Surface Defects Detection Based on Machine Vision.
    Bai T; Gao J; Yang J; Yao D
    Entropy (Basel); 2021 Oct; 23(11):. PubMed ID: 34828135
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intelligent Decision-Making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement Learning.
    Yang S; Xu Z; Wang J
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Survey on Data-Driven Predictive Maintenance for the Railway Industry.
    Davari N; Veloso B; Costa GA; Pereira PM; Ribeiro RP; Gama J
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction Models for Railway Track Geometry Degradation Using Machine Learning Methods: A Review.
    Liao Y; Han L; Wang H; Zhang H
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236374
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of Geogrid and Waste Tyres as Reinforcement Materials in Railway Track Beds.
    Li L; Fang Y; Cheng B; Chen N; Tian M; Liu Y
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach.
    Shi W; Chen L; Zhu X
    Sensors (Basel); 2023 Sep; 23(17):. PubMed ID: 37688051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning.
    Ohnishi S; Uchibe E; Yamaguchi Y; Nakanishi K; Yasui Y; Ishii S
    Front Neurorobot; 2019; 13():103. PubMed ID: 31920613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Wisdom of the Crowd: Reliable Deep Reinforcement Learning Through Ensembles of Q-Functions.
    Elliott DL; Anderson C
    IEEE Trans Neural Netw Learn Syst; 2023 Jan; 34(1):43-51. PubMed ID: 34185651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep imitation learning for 3D navigation tasks.
    Hussein A; Elyan E; Gaber MM; Jayne C
    Neural Comput Appl; 2018; 29(7):389-404. PubMed ID: 29576690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward robust and scalable deep spiking reinforcement learning.
    Akl M; Ergene D; Walter F; Knoll A
    Front Neurorobot; 2022; 16():1075647. PubMed ID: 36742191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting medical device failure: a promise to reduce healthcare facilities cost through smart healthcare management.
    Abd Rahman NH; Mohamad Zaki MH; Hasikin K; Abd Razak NA; Ibrahim AK; Lai KW
    PeerJ Comput Sci; 2023; 9():e1279. PubMed ID: 37346641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable Resource Allocation and Reduce Latency Based on Federated-Learning-Enabled Digital Twin in IoT Devices.
    Alhartomi MA; Salh A; Audah L; Alzahrani S; Alzahmi A; Altimania MR; Alotaibi A; Alsulami R; Al-Hartomy O
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monitoring System for Railway Infrastructure Elements Based on Thermal Imaging Analysis.
    Stypułkowski K; Gołda P; Lewczuk K; Tomaszewska J
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.