BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

709 related articles for article (PubMed ID: 36765684)

  • 1. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment.
    Tanaka HY; Nakazawa T; Enomoto A; Masamune A; Kano MR
    Cancers (Basel); 2023 Jan; 15(3):. PubMed ID: 36765684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting ROCK2 improves macromolecular permeability in a 3D fibrotic pancreatic cancer microenvironment model.
    Tanaka HY; Nakazawa T; Miyazaki T; Cabral H; Masamune A; Kano MR
    J Control Release; 2024 May; 369():283-295. PubMed ID: 38522816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stromal barriers to nanomedicine penetration in the pancreatic tumor microenvironment.
    Tanaka HY; Kano MR
    Cancer Sci; 2018 Jul; 109(7):2085-2092. PubMed ID: 29737600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomedicine Strategies to Enhance Tumor Drug Penetration in Pancreatic Cancer.
    Lu T; Prakash J
    Int J Nanomedicine; 2021; 16():6313-6328. PubMed ID: 34552327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?
    Danhier F
    J Control Release; 2016 Dec; 244(Pt A):108-121. PubMed ID: 27871992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery.
    Zhang B; Hu Y; Pang Z
    Front Pharmacol; 2017; 8():952. PubMed ID: 29311946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging nanomedicines for anti-stromal therapy against desmoplastic tumors.
    Han X; Xu Y; Geranpayehvaghei M; Anderson GJ; Li Y; Nie G
    Biomaterials; 2020 Feb; 232():119745. PubMed ID: 31918228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stromal disruption facilitating invasion of a 'nano-arsenal' into the solid tumor.
    Fu Y; Saraswat AL; Monpara J; Patel K
    Drug Discov Today; 2022 Apr; 27(4):1132-1141. PubMed ID: 34823002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic Remodeling of the Tumor Microenvironment Enhances Nanoparticle Delivery.
    Chen Y; Liu X; Yuan H; Yang Z; von Roemeling CA; Qie Y; Zhao H; Wang Y; Jiang W; Kim BYS
    Adv Sci (Weinh); 2019 Mar; 6(5):1802070. PubMed ID: 30886813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies to improve the EPR effect: A mechanistic perspective and clinical translation.
    Ikeda-Imafuku M; Wang LL; Rodrigues D; Shaha S; Zhao Z; Mitragotri S
    J Control Release; 2022 May; 345():512-536. PubMed ID: 35337939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological rationale for the design of polymeric anti-cancer nanomedicines.
    Zhou Y; Kopeček J
    J Drug Target; 2013 Jan; 21(1):1-26. PubMed ID: 23009337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tumor microenvironment and nanotherapeutics: intruding the tumor fort.
    Ravi Kiran AVVV; Kusuma Kumari G; Krishnamurthy PT; Khaydarov RR
    Biomater Sci; 2021 Nov; 9(23):7667-7704. PubMed ID: 34673853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unraveling the role of Intralipid in suppressing off-target delivery and augmenting the therapeutic effects of anticancer nanomedicines.
    Islam R; Gao S; Islam W; Šubr V; Zhou JR; Yokomizo K; Etrych T; Maeda H; Fang J
    Acta Biomater; 2021 May; 126():372-383. PubMed ID: 33774199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomedicine-based strategies to target and modulate the tumor microenvironment.
    Mendes BB; Sousa DP; Conniot J; Conde J
    Trends Cancer; 2021 Sep; 7(9):847-862. PubMed ID: 34090865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomedicine Strategies for Targeting Tumor Stroma.
    Su MC; Nethi SK; Dhanyamraju PK; Prabha S
    Cancers (Basel); 2023 Aug; 15(16):. PubMed ID: 37627173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of Nanomedicine in Tumor Spheroid as an
    Roy SM; Garg V; Barman S; Ghosh C; Maity AR; Ghosh SK
    Front Bioeng Biotechnol; 2021; 9():785937. PubMed ID: 34926430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms.
    Zi Y; Yang K; He J; Wu Z; Liu J; Zhang W
    Adv Drug Deliv Rev; 2022 Sep; 188():114449. PubMed ID: 35835353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.