BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

715 related articles for article (PubMed ID: 36765684)

  • 21. Destruction of tumor vasculature by vascular disrupting agents in overcoming the limitation of EPR effect.
    Liu Z; Zhang Y; Shen N; Sun J; Tang Z; Chen X
    Adv Drug Deliv Rev; 2022 Apr; 183():114138. PubMed ID: 35143895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immune Cell Modulation of the Extracellular Matrix Contributes to the Pathogenesis of Pancreatic Cancer.
    Ahmad RS; Eubank TD; Lukomski S; Boone BA
    Biomolecules; 2021 Jun; 11(6):. PubMed ID: 34204306
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deciphering the role of stroma in pancreatic cancer.
    Waghray M; Yalamanchili M; di Magliano MP; Simeone DM
    Curr Opin Gastroenterol; 2013 Sep; 29(5):537-43. PubMed ID: 23892539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-resolution 3D visualization of nanomedicine distribution in tumors.
    Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST
    Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the tumor microenvironment with nanoparticles.
    Miao L; Huang L
    Cancer Treat Res; 2015; 166():193-226. PubMed ID: 25895870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An MMP-2 Responsive Liposome Integrating Antifibrosis and Chemotherapeutic Drugs for Enhanced Drug Perfusion and Efficacy in Pancreatic Cancer.
    Ji T; Li S; Zhang Y; Lang J; Ding Y; Zhao X; Zhao R; Li Y; Shi J; Hao J; Zhao Y; Nie G
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3438-45. PubMed ID: 26759926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy.
    Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z
    Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The PDAC Extracellular Matrix: A Review of the ECM Protein Composition, Tumor Cell Interaction, and Therapeutic Strategies.
    Perez VM; Kearney JF; Yeh JJ
    Front Oncol; 2021; 11():751311. PubMed ID: 34692532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antifibrotic therapy to normalize the tumor microenvironment.
    Hauge A; Rofstad EK
    J Transl Med; 2020 May; 18(1):207. PubMed ID: 32434573
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Passive Targeting to Personalized Nanomedicine: Multidimensional Insights on Nanoparticles' Interaction with the Tumor Microenvironment.
    Sebak AA; El-Shenawy BM; El-Safy S; El-Shazly M
    Curr Pharm Biotechnol; 2021; 22(11):1444-1465. PubMed ID: 33308126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FAP-overexpressing fibroblasts produce an extracellular matrix that enhances invasive velocity and directionality of pancreatic cancer cells.
    Lee HO; Mullins SR; Franco-Barraza J; Valianou M; Cukierman E; Cheng JD
    BMC Cancer; 2011 Jun; 11():245. PubMed ID: 21668992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pathophysiological role of microRNA-29 in pancreatic cancer stroma.
    Kwon JJ; Nabinger SC; Vega Z; Sahu SS; Alluri RK; Abdul-Sater Z; Yu Z; Gore J; Nalepa G; Saxena R; Korc M; Kota J
    Sci Rep; 2015 Jun; 5():11450. PubMed ID: 26095125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermosensitive Liposomal Codelivery of HSA-Paclitaxel and HSA-Ellagic Acid Complexes for Enhanced Drug Perfusion and Efficacy Against Pancreatic Cancer.
    Wei Y; Wang Y; Xia D; Guo S; Wang F; Zhang X; Gan Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25138-25151. PubMed ID: 28696100
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles.
    Yhee JY; Jeon S; Yoon HY; Shim MK; Ko H; Min J; Na JH; Chang H; Han H; Kim JH; Suh M; Lee H; Park JH; Kim K; Kwon IC
    J Control Release; 2017 Dec; 267():223-231. PubMed ID: 28917532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclopamine treatment disrupts extracellular matrix and alleviates solid stress to improve nanomedicine delivery for pancreatic cancer.
    Zhang B; Wang H; Jiang T; Jin K; Luo Z; Shi W; Mei H; Wang H; Hu Y; Pang Z; Jiang X
    J Drug Target; 2018 Dec; 26(10):913-919. PubMed ID: 29533111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment.
    Zhang Y; Ho SH; Li B; Nie G; Li S
    Med Res Rev; 2020 May; 40(3):1084-1102. PubMed ID: 31709590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship.
    Weniger M; Honselmann KC; Liss AS
    Cancers (Basel); 2018 Sep; 10(9):. PubMed ID: 30200666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity.
    Panagi M; Voutouri C; Mpekris F; Papageorgis P; Martin MR; Martin JD; Demetriou P; Pierides C; Polydorou C; Stylianou A; Louca M; Koumas L; Costeas P; Kataoka K; Cabral H; Stylianopoulos T
    Theranostics; 2020; 10(4):1910-1922. PubMed ID: 32042344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor-Targeted Nanomedicine for Immunotherapy.
    Cabral H; Kinoh H; Kataoka K
    Acc Chem Res; 2020 Dec; 53(12):2765-2776. PubMed ID: 33161717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.