These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 36765929)

  • 1. Targeted Therapy of Interleukin-34 as a Promising Approach to Overcome Cancer Therapy Resistance.
    Monteleone G; Franzè E; Maresca C; Colella M; Pacifico T; Stolfi C
    Cancers (Basel); 2023 Feb; 15(3):. PubMed ID: 36765929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloid-derived suppressor cells: The green light for myeloma immune escape.
    Malek E; de Lima M; Letterio JJ; Kim BG; Finke JH; Driscoll JJ; Giralt SA
    Blood Rev; 2016 Sep; 30(5):341-8. PubMed ID: 27132116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Friend or Foe? Recent Strategies to Target Myeloid Cells in Cancer.
    Chaib M; Chauhan SC; Makowski L
    Front Cell Dev Biol; 2020; 8():351. PubMed ID: 32509781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delicaflavone reactivates anti-tumor immune responses by abrogating monocytic myeloid cell-mediated immunosuppression.
    Li L; You W; Wang X; Zou Y; Yao H; Lan H; Lin X; Zhang Q; Chen B
    Phytomedicine; 2023 Jan; 108():154508. PubMed ID: 36332384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic gene modified cell based cancer vaccines.
    Kozłowska A; Mackiewicz J; Mackiewicz A
    Gene; 2013 Aug; 525(2):200-7. PubMed ID: 23566846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of Immunosuppressive Cells as a Target for Immunotherapies in Melanoma and Non-Melanoma Skin Cancers.
    Fujimura T; Aiba S
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32707850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy.
    Draghiciu O; Lubbers J; Nijman HW; Daemen T
    Oncoimmunology; 2015 Jan; 4(1):e954829. PubMed ID: 25949858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics.
    Finke JH; Rayman PA; Ko JS; Bradley JM; Gendler SJ; Cohen PA
    Cancer J; 2013; 19(4):353-64. PubMed ID: 23867518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets.
    Tie Y; Tang F; Wei YQ; Wei XW
    J Hematol Oncol; 2022 May; 15(1):61. PubMed ID: 35585567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment.
    Nakamura K; Smyth MJ
    Cell Mol Immunol; 2020 Jan; 17(1):1-12. PubMed ID: 31611651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulatory T cells and myeloid-derived suppressor cells in the tumor microenvironment undergo Fas-dependent cell death during IL-2/αCD40 therapy.
    Weiss JM; Subleski JJ; Back T; Chen X; Watkins SK; Yagita H; Sayers TJ; Murphy WJ; Wiltrout RH
    J Immunol; 2014 Jun; 192(12):5821-9. PubMed ID: 24808361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid suppressor cells in cancer and autoimmunity.
    Sica A; Massarotti M
    J Autoimmun; 2017 Dec; 85():117-125. PubMed ID: 28728794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer.
    Fang B; Lu Y; Li X; Wei Y; Ye D; Wei G; Zhu Y
    Prostate Cancer Prostatic Dis; 2024 Apr; ():. PubMed ID: 38565910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting of the tumor microenvironment by curcumin.
    Fu X; He Y; Li M; Huang Z; Najafi M
    Biofactors; 2021 Nov; 47(6):914-932. PubMed ID: 34375483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging role of natural products in cancer immunotherapy.
    Dong S; Guo X; Han F; He Z; Wang Y
    Acta Pharm Sin B; 2022 Mar; 12(3):1163-1185. PubMed ID: 35530162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting myeloid-derived suppressive cells in the tumor microenvironment to enhance the efficacy of cancer immunotherapy.
    Huo S; Liu L; Li Q; Wang J
    Discov Med; 2020; 30(161):119-128. PubMed ID: 33593480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocytic myeloid-derived suppressor cells as a potent suppressor of tumor immunity in non-small cell lung cancer.
    Pogoda K; Pyszniak M; Rybojad P; Tabarkiewicz J
    Oncol Lett; 2016 Dec; 12(6):4785-4794. PubMed ID: 28101225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interleukin 33 in tumor microenvironment is crucial for the accumulation and function of myeloid-derived suppressor cells.
    Xiao P; Wan X; Cui B; Liu Y; Qiu C; Rong J; Zheng M; Song Y; Chen L; He J; Tan Q; Wang X; Shao X; Liu Y; Cao X; Wang Q
    Oncoimmunology; 2016; 5(1):e1063772. PubMed ID: 26942079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer.
    Lebdai S; Gigoux M; Alvim R; Somma A; Nagar K; Azzouzi AR; Cussenot O; Merghoub T; Wolchok JD; Scherz A; Kim K; Coleman J
    Oncoimmunology; 2019; 8(6):e1581528. PubMed ID: 31069149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs.
    Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS
    Cells; 2021 Apr; 10(4):. PubMed ID: 33919732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.