These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36766031)

  • 1. A Combinational Optimization Method for Efficient Production of Indigo by the Recombinant
    Pan Z; Tao D; Ren M; Cheng L
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of Indigo by Recombinant
    Du L; Yue J; Zhu Y; Yin S
    Foods; 2022 Jul; 11(14):. PubMed ID: 35885360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the two-component regulator StyS/StyR enhanced transcription of the styrene monooxygenase gene styAB and indigo biosynthesis in Escherichia coli.
    Yin S; Li Y; Hou J
    Enzyme Microb Technol; 2024 Mar; 174():110381. PubMed ID: 38134734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Indigo Production by Over-Expression of the Styrene Monooxygenase in Pseudomonas putida.
    Cheng L; Yin S; Chen M; Sun B; Hao S; Wang C
    Curr Microbiol; 2016 Aug; 73(2):248-54. PubMed ID: 27154464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of styAB is regulated by a two-component system during indigo biosynthesis in Pseudomonas putida.
    Cheng L; Yue J; Yin S; Ren M; Wang C
    Biochem Biophys Res Commun; 2019 Oct; 519(1):198-203. PubMed ID: 31492500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for efficient production of L-5-hydroxytryptophan from glucose.
    Zhang Z; Yu Z; Wang J; Yu Y; Li L; Sun P; Fan X; Xu Q
    Microb Cell Fact; 2022 Sep; 21(1):198. PubMed ID: 36153615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auto-inducible Synthetic Pathway in E. coli Enhanced Sustainable Indigo Production from Glucose.
    Pham NN; Wu YH; Dai TA; Tu J; Liang RM; Hsieh HY; Chang CW; Hu YC
    Metab Eng; 2024 Jul; ():. PubMed ID: 38971492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and optimization of a microbial co-culture system for heterologous indigo biosynthesis.
    Chen T; Wang X; Zhuang L; Shao A; Lu Y; Zhang H
    Microb Cell Fact; 2021 Aug; 20(1):154. PubMed ID: 34348711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of metabolic engineering to improve both the production and use of biotech indigo.
    Berry A; Dodge TC; Pepsin M; Weyler W
    J Ind Microbiol Biotechnol; 2002 Mar; 28(3):127-33. PubMed ID: 12074085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an efficient indole oxygenase system from Cupriavidus sp. SHE for indigo production.
    Dai C; Ma Q; Li Y; Zhou D; Yang B; Qu Y
    Bioprocess Biosyst Eng; 2019 Dec; 42(12):1963-1971. PubMed ID: 31482396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overview of indigo biosynthesis by Flavin-containing Monooxygenases: History, industrialization challenges, and strategies.
    Fan C; Xie Z; Zheng D; Zhang R; Li Y; Shi J; Cheng M; Wang Y; Zhou Y; Zhan Y; Yan Y
    Biotechnol Adv; 2024; 73():108374. PubMed ID: 38729229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An indigo-producing plant, Polygonum tinctorium, possesses a flavin-containing monooxygenase capable of oxidizing indole.
    Inoue S; Morita R; Minami Y
    Biochem Biophys Res Commun; 2021 Jan; 534():199-205. PubMed ID: 33303189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of indigo through the use of a dual-function substrate and a bifunctional fusion enzyme.
    Fabara AN; Fraaije MW
    Enzyme Microb Technol; 2020 Dec; 142():109692. PubMed ID: 33220871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin.
    Ameria SP; Jung HS; Kim HS; Han SS; Kim HS; Lee JH
    Biotechnol Lett; 2015 Aug; 37(8):1637-44. PubMed ID: 25851950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of overexpression of malate dehydrogenase on succinic acid production in Escherichia coli NZN111].
    Liang L; Ma J; Liu R; Wang G; Xu B; Zhang M; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2011 Jul; 27(7):1005-12. PubMed ID: 22016984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indigo production by naphthalene-degrading bacteria.
    Bhushan B; Samanta SK; Jain RK
    Lett Appl Microbiol; 2000 Jul; 31(1):5-9. PubMed ID: 10886605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation.
    Han GH; Gim GH; Kim W; Seo SI; Kim SW
    J Biotechnol; 2012 Dec; 164(2):179-87. PubMed ID: 22954889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning of a gene encoding flavin reductase coupling with dibenzothiophene monooxygenase through coexpression screening using indigo production as selective indication.
    Furuya T; Takahashi S; Ishii Y; Kino K; Kirimura K
    Biochem Biophys Res Commun; 2004 Jan; 313(3):570-5. PubMed ID: 14697229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.