These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36766031)

  • 41. Construction of an insertional-inactivation cloning vector for Escherichia coli using a Rhodococcus gene for indigo production.
    Hart S; Woods DR
    J Gen Microbiol; 1992 Jan; 138(1):205-9. PubMed ID: 1556550
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient production of indigoidine in Escherichia coli.
    Xu F; Gage D; Zhan J
    J Ind Microbiol Biotechnol; 2015 Aug; 42(8):1149-55. PubMed ID: 26109508
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inducible and constitutive expression using new plasmid and integrative expression vectors for Thermus sp.
    Kayser KJ; Kwak JH; Park HS; Kilbane JJ
    Lett Appl Microbiol; 2001 Jun; 32(6):412-8. PubMed ID: 11412354
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase.
    Panke S; Wubbolts MG; Schmid A; Witholt B
    Biotechnol Bioeng; 2000 Jul; 69(1):91-100. PubMed ID: 10820335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Study on biosynthesis of indigo involving transferring naphthalene plasmid DNA from Pseudomonas to E. coli].
    Wu Y; Zhang SQ; Ma GH; Song DL; Zhao JY
    Yi Chuan Xue Bao; 1989; 16(4):318-24. PubMed ID: 2486253
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Construction of co-expression SHMT and TPase recombinant vector and dual-enzymatic synthesis of L-tryptophan].
    Li X; Liu J; Zhao Q; Xu A
    Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1302-8. PubMed ID: 21141123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins.
    Fiege K; Frankenberg-Dinkel N
    Microb Cell Fact; 2020 Oct; 19(1):190. PubMed ID: 33023596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo.
    Ensley BD; Ratzkin BJ; Osslund TD; Simon MJ; Wackett LP; Gibson DT
    Science; 1983 Oct; 222(4620):167-9. PubMed ID: 6353574
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering NAD+ availability for Escherichia coli whole-cell biocatalysis: a case study for dihydroxyacetone production.
    Zhou YJ; Yang W; Wang L; Zhu Z; Zhang S; Zhao ZK
    Microb Cell Fact; 2013 Nov; 12():103. PubMed ID: 24209782
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced production of GDP-L-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli.
    Lee WH; Chin YW; Han NS; Kim MD; Seo JH
    Appl Microbiol Biotechnol; 2011 Aug; 91(4):967-76. PubMed ID: 21538115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene expression studies of Thermus thermophilus promoters PdnaK, Parg and Pscs-mdh.
    Park HS; Kilbane JJ
    Lett Appl Microbiol; 2004; 38(5):415-22. PubMed ID: 15059214
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel flavin-containing monooxygenase from Methylophaga sp strain SK1 and its indigo synthesis in Escherichia coli.
    Choi HS; Kim JK; Cho EH; Kim YC; Kim JI; Kim SW
    Biochem Biophys Res Commun; 2003 Jul; 306(4):930-6. PubMed ID: 12821131
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic engineering of Escherichia coli for the production of riboflavin.
    Lin Z; Xu Z; Li Y; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2014 Jul; 13():104. PubMed ID: 25027702
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Performance and Microbial Community Analysis of Bioaugmented Activated Sludge System for Indigo Production from Indole.
    Zhang X; Qu Y; Ma Q; Li S; Dai C; Lian S; Zhou J
    Appl Biochem Biotechnol; 2019 Apr; 187(4):1437-1447. PubMed ID: 30246226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Blue genome: chromosome-scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in Strobilanthes cusia.
    Xu W; Zhang L; Cunningham AB; Li S; Zhuang H; Wang Y; Liu A
    Plant J; 2020 Nov; 104(4):864-879. PubMed ID: 32981147
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp strain ST-550 in a water-organic solvent two-phase system.
    Doukyu N; Toyoda K; Aono R
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):720-5. PubMed ID: 12664152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli.
    Yu TH; Yi YC; Shih IT; Ng IS
    Appl Biochem Biotechnol; 2020 May; 191(1):299-312. PubMed ID: 31845195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient one-step production of (S)-1-phenyl-1,2-ethanediol from (R)-enantiomer plus NAD(+)-NADPH in-situ regeneration using engineered Escherichia coli.
    Zhang R; Xu Y; Xiao R; Zhang B; Wang L
    Microb Cell Fact; 2012 Dec; 11():167. PubMed ID: 23272948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Employing a biochemical protecting group for a sustainable indigo dyeing strategy.
    Hsu TM; Welner DH; Russ ZN; Cervantes B; Prathuri RL; Adams PD; Dueber JE
    Nat Chem Biol; 2018 Mar; 14(3):256-261. PubMed ID: 29309053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.