These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36766445)
1. Feature Transformation for Efficient Blood Glucose Prediction in Type 1 Diabetes Mellitus Patients. Butt H; Khosa I; Iftikhar MA Diagnostics (Basel); 2023 Jan; 13(3):. PubMed ID: 36766445 [TBL] [Abstract][Full Text] [Related]
2. Incorporating Glucose Variability into Glucose Forecasting Accuracy Assessment Using the New Glucose Variability Impact Index and the Prediction Consistency Index: An LSTM Case Example. Mosquera-Lopez C; Jacobs PG J Diabetes Sci Technol; 2022 Jan; 16(1):7-18. PubMed ID: 34490793 [TBL] [Abstract][Full Text] [Related]
3. Forecasting glucose values for patients with type 1 diabetes using heart rate data. Giancotti R; Bosoni P; Vizza P; Tradigo G; Gnasso A; Guzzi PH; Bellazzi R; Irace C; Veltri P Comput Methods Programs Biomed; 2024 Dec; 257():108438. PubMed ID: 39332152 [TBL] [Abstract][Full Text] [Related]
4. Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction. Rabby MF; Tu Y; Hossen MI; Lee I; Maida AS; Hei X BMC Med Inform Decis Mak; 2021 Mar; 21(1):101. PubMed ID: 33726723 [TBL] [Abstract][Full Text] [Related]
5. Short Term Glucose Prediction in Patients with Type 1 Diabetes Mellitus. Katsarou DN; Georga EI; Christou M; Tigas S; Papaloukas C; Fotiadis DI Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():329-332. PubMed ID: 36085667 [TBL] [Abstract][Full Text] [Related]
6. Leveraging a Big Dataset to Develop a Recurrent Neural Network to Predict Adverse Glycemic Events in Type 1 Diabetes. Mosquera-Lopez C; Dodier R; Tyler N; Resalat N; Jacobs P IEEE J Biomed Health Inform; 2019 Apr; ():. PubMed ID: 30998484 [TBL] [Abstract][Full Text] [Related]
7. A personalized multitasking framework for real-time prediction of blood glucose levels in type 1 diabetes patients. Yang H; Li W; Tian M; Ren Y Math Biosci Eng; 2024 Jan; 21(2):2515-2541. PubMed ID: 38454694 [TBL] [Abstract][Full Text] [Related]
8. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes. Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477 [TBL] [Abstract][Full Text] [Related]
9. Development of a Deep Learning Model for Dynamic Forecasting of Blood Glucose Level for Type 2 Diabetes Mellitus: Secondary Analysis of a Randomized Controlled Trial. Faruqui SHA; Du Y; Meka R; Alaeddini A; Li C; Shirinkam S; Wang J JMIR Mhealth Uhealth; 2019 Nov; 7(11):e14452. PubMed ID: 31682586 [TBL] [Abstract][Full Text] [Related]
10. A personalized blood glucose level prediction model with a fine-tuning strategy: A proof-of-concept study. Seo W; Park SW; Kim N; Jin SM; Park SM Comput Methods Programs Biomed; 2021 Nov; 211():106424. PubMed ID: 34598081 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Seasonal Stochastic Local Models for Glucose Prediction without Meal Size Information under Free-Living Conditions. Prendin F; Díez JL; Del Favero S; Sparacino G; Facchinetti A; Bondia J Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433278 [TBL] [Abstract][Full Text] [Related]
12. A Multitask Learning Approach to Personalized Blood Glucose Prediction. Daniels J; Herrero P; Georgiou P IEEE J Biomed Health Inform; 2022 Jan; 26(1):436-445. PubMed ID: 34314367 [TBL] [Abstract][Full Text] [Related]
13. The effectiveness of continuous subcutaneous insulin pumps with continuous glucose monitoring in outpatient adolescents with type 1 diabetes: A systematic review. Matsuda E; Brennan P JBI Libr Syst Rev; 2012; 10(42 Suppl):1-10. PubMed ID: 27820140 [TBL] [Abstract][Full Text] [Related]
14. Glucose Prediction using Wide-Deep LSTM Network for Accurate Insulin Dosing in Artificial Pancreas. Kalita D; Mirza KB Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4426-4429. PubMed ID: 36086315 [TBL] [Abstract][Full Text] [Related]
15. Individualized Models for Glucose Prediction in Type 1 Diabetes: Comparing Black-Box Approaches to a Physiological White-Box One. Cappon G; Prendin F; Facchinetti A; Sparacino G; Favero SD IEEE Trans Biomed Eng; 2023 Nov; 70(11):3105-3115. PubMed ID: 37195837 [TBL] [Abstract][Full Text] [Related]
16. Multi-Hour Blood Glucose Prediction in Type 1 Diabetes: A Patient-Specific Approach Using Shallow Neural Network Models. Kushner T; Breton MD; Sankaranarayanan S Diabetes Technol Ther; 2020 Dec; 22(12):883-891. PubMed ID: 32324062 [No Abstract] [Full Text] [Related]
17. Neural Physiological Model: A Simple Module for Blood Glucose Prediction. Gu K; Dang R; Prioleau T Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5476-5481. PubMed ID: 33019219 [TBL] [Abstract][Full Text] [Related]
18. Deep Physiological Model for Blood Glucose Prediction in T1DM Patients. Munoz-Organero M Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668724 [TBL] [Abstract][Full Text] [Related]
19. GluNet: A Deep Learning Framework for Accurate Glucose Forecasting. Li K; Liu C; Zhu T; Herrero P; Georgiou P IEEE J Biomed Health Inform; 2020 Feb; 24(2):414-423. PubMed ID: 31369390 [TBL] [Abstract][Full Text] [Related]
20. Clinically Accurate Prediction of Glucose Levels in Patients with Type 1 Diabetes. Amar Y; Shilo S; Oron T; Amar E; Phillip M; Segal E Diabetes Technol Ther; 2020 Aug; 22(8):562-569. PubMed ID: 31928415 [No Abstract] [Full Text] [Related] [Next] [New Search]