BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 36766784)

  • 1. Deciphering Interactions between Phosphorus Status and Toxic Metal Exposure in Plants and Rhizospheres to Improve Crops Reared on Acid Soil.
    Wang X; Ai S; Liao H
    Cells; 2023 Jan; 12(3):. PubMed ID: 36766784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency.
    Kochian LV; Hoekenga OA; Pineros MA
    Annu Rev Plant Biol; 2004; 55():459-93. PubMed ID: 15377228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminium-phosphorus interactions in plants growing on acid soils: does phosphorus always alleviate aluminium toxicity?
    Chen RF; Zhang FL; Zhang QM; Sun QB; Dong XY; Shen RF
    J Sci Food Agric; 2012 Mar; 92(5):995-1000. PubMed ID: 21815161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of mineral nutrition in minimizing cadmium accumulation by plants.
    Sarwar N; ; Malhi SS; Zia MH; Naeem A; Bibi S; Farid G
    J Sci Food Agric; 2010 Apr; 90(6):925-37. PubMed ID: 20355131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic changes of rhizosphere soil bacterial community and nutrients in cadmium polluted soils with soybean-corn intercropping.
    Li H; Luo L; Tang B; Guo H; Cao Z; Zeng Q; Chen S; Chen Z
    BMC Microbiol; 2022 Feb; 22(1):57. PubMed ID: 35168566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NRAMPs and manganese: Magic keys to reduce cadmium toxicity and accumulation in plants.
    Kanwal F; Riaz A; Ali S; Zhang G
    Sci Total Environ; 2024 Apr; 921():171005. PubMed ID: 38378068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STOP1 and STOP1-like proteins, key transcription factors to cope with acid soil syndrome.
    Li X; Tian Y
    Front Plant Sci; 2023; 14():1200139. PubMed ID: 37416880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese facilitates cadmium stabilization through physicochemical dynamics and amino acid accumulation in rice rhizosphere under flood-associated low pe+pH.
    Wang M; Wang L; Zhao S; Li S; Lei X; Qin L; Sun X; Chen S
    J Hazard Mater; 2021 Aug; 416():126079. PubMed ID: 34492898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium toxicity in plants: Impacts and remediation strategies.
    Haider FU; Liqun C; Coulter JA; Cheema SA; Wu J; Zhang R; Wenjun M; Farooq M
    Ecotoxicol Environ Saf; 2021 Mar; 211():111887. PubMed ID: 33450535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils.
    Magalhaes JV; Piñeros MA; Maciel LS; Kochian LV
    Front Plant Sci; 2018; 9():1420. PubMed ID: 30319678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils.
    Chen ZC; Liao H
    J Genet Genomics; 2016 Nov; 43(11):631-638. PubMed ID: 27890545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of amendments on the alleviation of aluminum toxicity and cadmium and zinc uptake by Sedum plumbizincicola in acid soils].
    Chen S; Zhou J; Liu H; Luo Y; Wu L; Xin Z
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):529-540. PubMed ID: 32237546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities.
    Rahman MA; Lee SH; Ji HC; Kabir AH; Jones CS; Lee KW
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30297682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of soil properties on heavy metal bioavailability and accumulation in crop grains under different farmland use patterns.
    Xu D; Shen Z; Dou C; Dou Z; Li Y; Gao Y; Sun Q
    Sci Rep; 2022 Jun; 12(1):9211. PubMed ID: 35654920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil.
    Shaheen SM; Shams MS; Khalifa MR; El-Dali MA; Rinklebe J
    Ecotoxicol Environ Saf; 2017 Aug; 142():375-387. PubMed ID: 28441624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.
    Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C
    Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere.
    Hou D; Lin Z; Wang R; Ge J; Wei S; Xie R; Wang H; Wang K; Hu Y; Yang X; Lu L; Tian S
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supplying amendments alleviates aluminum toxicity and regulates cadmium accumulation by spinach in strongly acidic soils.
    Fan B; Ding S; Peng Y; Yin J; Liu Y; Cui S; Zhou X; Mu K; Ru S; Chen Q
    J Environ Manage; 2022 Dec; 324():116340. PubMed ID: 36170780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.
    Sade H; Meriga B; Surapu V; Gadi J; Sunita MS; Suravajhala P; Kavi Kishor PB
    Biometals; 2016 Apr; 29(2):187-210. PubMed ID: 26796895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.
    Kochian LV; Piñeros MA; Liu J; Magalhaes JV
    Annu Rev Plant Biol; 2015; 66():571-98. PubMed ID: 25621514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.