These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 3676726)
1. The effects of in vivo inactivation of GABA-transaminase and glutamic acid decarboxylase on levels of GABA in the rat retina. Cubells JF; Blanchard JS; Makman MH Brain Res; 1987 Sep; 419(1-2):208-15. PubMed ID: 3676726 [TBL] [Abstract][Full Text] [Related]
2. In vivo action of enzyme-activated irreversible inhibitors of glutamic acid decarboxylase and gamma-aminobutyric acid transaminase in retina vs. brain. Cubells JF; Blanchard JS; Smith DM; Makman MH J Pharmacol Exp Ther; 1986 Aug; 238(2):508-14. PubMed ID: 3735130 [TBL] [Abstract][Full Text] [Related]
3. Development of tolerance to the effects of vigabatrin (gamma-vinyl-GABA) on GABA release from rat cerebral cortex, spinal cord and retina. Neal MJ; Shah MA Br J Pharmacol; 1990 Jun; 100(2):324-8. PubMed ID: 2379037 [TBL] [Abstract][Full Text] [Related]
4. The effects of gabaculine in vivo on the distribution of GABA-like immunoreactivity in the rat retina. Cubells JF; Walkley SU; Makman MH Brain Res; 1988 Aug; 458(1):82-90. PubMed ID: 3061567 [TBL] [Abstract][Full Text] [Related]
5. The differential effects of GABA-transaminase inactivation in the chick retina and brain. Rando RR; Coburn J; Parkinson D J Neurochem; 1982 Oct; 39(4):1147-51. PubMed ID: 7119785 [TBL] [Abstract][Full Text] [Related]
6. Effects of the gamma-aminobutyrate transaminase inhibitors gabaculine and gamma-vinyl GABA on gamma-aminobutyric acid release from slices of rat cerebral cortex. Bedwani JR; Mehta A Neurochem Res; 1987 Jan; 12(1):49-52. PubMed ID: 3574587 [TBL] [Abstract][Full Text] [Related]
7. 2-amino-4-phosphonobutyric acid exerts a light-dependent effect on post-gabaculine levels of retinal gamma-aminobutyric acid (GABA): evidence that ON synaptic pathways regulate retinal GABAergic transmission. Cubells JF; Ndubuka C; Makman MH J Neurochem; 1991 Jul; 57(1):46-52. PubMed ID: 1646863 [TBL] [Abstract][Full Text] [Related]
8. Effects of intraventricular gamma-acetylenic-GABA on GABA concentrations, GABA-T and GAD in several areas of the chick brain. Nisticò G; Di Giorgio RM; De Luca G; Di Perri R; Macaione S Monogr Neural Sci; 1980; 5():34-9. PubMed ID: 7322172 [TBL] [Abstract][Full Text] [Related]
9. Effects of single and multiple increasing doses of vigabatrin on brain GABA metabolism and correlation with vigabatrin plasma concentration. Valdizán EM; Armijo JA Biochem Pharmacol; 1992 May; 43(10):2143-50. PubMed ID: 1599502 [TBL] [Abstract][Full Text] [Related]
10. The use of gabaculine-induced accumulation of GABA for an index of synthesis of GABA in the retina. Proll MA; Morgan WW Neuropharmacology; 1982 Dec; 21(12):1251-5. PubMed ID: 7155308 [TBL] [Abstract][Full Text] [Related]
11. Effect of gabaculine on metabolism and release of gamma-aminobutyric acid in synaptosomes. Asakura T; Matsuda M Neurochem Res; 1990 Mar; 15(3):295-300. PubMed ID: 1973270 [TBL] [Abstract][Full Text] [Related]
12. Existence of gamma-aminobutyric acid and its biosynthetic and metabolic enzymes in rat salivary glands. Sawaki K; Ouchi K; Sato T; Kawaguchi M Jpn J Pharmacol; 1995 Apr; 67(4):359-63. PubMed ID: 7650868 [TBL] [Abstract][Full Text] [Related]
13. Use of gamma-aminobutyric acid (GABA)-transaminase inhibitors and a GABA uptake inhibitor to investigate the influence of GABA neurons on dopamine-containing amacrine cells of the rat retina. Proll MA; Morgan WW J Pharmacol Exp Ther; 1983 Dec; 227(3):627-32. PubMed ID: 6140307 [TBL] [Abstract][Full Text] [Related]
14. Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina. Neal MJ; Cunningham JR; Shah MA; Yazulla S Neurosci Lett; 1989 Mar; 98(1):29-32. PubMed ID: 2710396 [TBL] [Abstract][Full Text] [Related]
15. The action of gamma-vinyl-GABA and gamma-acetylenic-GABA on the resting and stimulated release of GABA in vivo. Abdul-Ghani AS; Coutinho-Netto J; Bradford HF Brain Res; 1980 Jun; 191(2):471-81. PubMed ID: 7378767 [TBL] [Abstract][Full Text] [Related]
16. [Effect of thyrotropin releasing hormone (TRH) on GABA (gamma aminobutyric acid) metabolism in mouse and rat brains: as to the activities of GAD (glutamic acid decarboxylase), GABA-T (GABA-transaminase) and GABA re-uptake]. Kurahashi K; Kaneko S; Matsunaga M; Sato T; Takebe K No To Shinkei; 1985 Dec; 37(12):1211-6. PubMed ID: 3937548 [TBL] [Abstract][Full Text] [Related]
17. Effects of chronic oral treatment with GABA-transaminase inhibitors on the GABA system in brain, liver, kidney, and plasma of the rat. Qume M; Fowler LJ Biochem Pharmacol; 1996 Nov; 52(9):1355-63. PubMed ID: 8937445 [TBL] [Abstract][Full Text] [Related]
18. Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activity in vivo. Patel AB; de Graaf RA; Martin DL; Battaglioli G; Behar KL J Neurochem; 2006 Apr; 97(2):385-96. PubMed ID: 16539672 [TBL] [Abstract][Full Text] [Related]
19. Elevated endogenous GABA level correlates with decreased fMRI signals in the rat brain during acute inhibition of GABA transaminase. Chen Z; Silva AC; Yang J; Shen J J Neurosci Res; 2005 Feb; 79(3):383-91. PubMed ID: 15619231 [TBL] [Abstract][Full Text] [Related]
20. Differential effects of vigabatrin, gamma-acetylenic GABA, aminooxyacetic acid, and valproate on levels of various amino acids in rat brain regions and plasma. Löscher W; Hörstermann D Naunyn Schmiedebergs Arch Pharmacol; 1994 Mar; 349(3):270-8. PubMed ID: 8208305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]