BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3676764)

  • 1. Morphological and biochemical differences expressed in separate dissociated cell cultures of dorsal and ventral halves of the mouse spinal cord.
    Guthrie PB; Brenneman DE; Neale EA
    Brain Res; 1987 Sep; 420(2):313-23. PubMed ID: 3676764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ventral and dorsal horn acetylcholinesterase neurons are maintained in organotypic cultures of postnatal rat spinal cord explants.
    Delfs J; Friend J; Ishimoto S; Saroff D
    Brain Res; 1989 May; 488(1-2):31-42. PubMed ID: 2743126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thyrotropin-releasing hormone enhances choline acetyltransferase and creatine kinase in cultured spinal ventral horn neurons.
    Schmidt-Achert KM; Askanas V; Engel WK
    J Neurochem; 1984 Aug; 43(2):586-9. PubMed ID: 6429281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Embryonic development of four different subsets of cholinergic neurons in rat cervical spinal cord.
    Phelps PE; Barber RP; Brennan LA; Maines VM; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1990 Jan; 291(1):9-26. PubMed ID: 2298930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs).
    Sueiro C; Carrera I; Molist P; Rodríguez-Moldes I; Anadón R
    J Comp Neurol; 2004 Oct; 478(2):189-206. PubMed ID: 15349979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study.
    Phelps PE; Barber RP; Vaughn JE
    J Comp Neurol; 1988 Jul; 273(4):459-72. PubMed ID: 3209733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous and exogenous factors support neuronal survival and choline acetyltransferase activity in embryonic spinal cord cultures.
    Manthorpe M; Luyten W; Longo FM; Varon S
    Brain Res; 1983 May; 267(1):57-66. PubMed ID: 6860950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroepithelial cells in the rat spinal cord express glutamate decarboxylase immunoreactivity in vivo and in vitro.
    Ma W; Behar T; Maric D; Maric I; Barker JL
    J Comp Neurol; 1992 Nov; 325(2):257-70. PubMed ID: 1460115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurons dissociated from rat myenteric plexus retain differentiated properties when grown in cell culture. I. Morphological properties and immunocytochemical localization of transmitter candidates.
    Nishi R; Willard AL
    Neuroscience; 1985 Sep; 16(1):187-99. PubMed ID: 2423914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic function in cultures of mouse spinal cord neurons.
    Wang FZ; Nelson PG; Fitzgerald SC; Hersh LB; Neale EA
    J Neurosci Res; 1990 Mar; 25(3):312-23. PubMed ID: 2325157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase of choline acetyltransferase by colchicine in primary cell cultures of spinal cord.
    Ishida I; Deguchi T
    J Neurochem; 1984 Jul; 43(1):42-8. PubMed ID: 6726256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium.
    Giller EL; Neale JH; Bullock PN; Schrier BK; Nelson PG
    J Cell Biol; 1977 Jul; 74(1):16-29. PubMed ID: 874000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-expression of GAD67 and choline acetyltransferase in neurons in the mouse spinal cord: A focus on lamina X.
    Gotts J; Atkinson L; Yanagawa Y; Deuchars J; Deuchars SA
    Brain Res; 2016 Sep; 1646():570-579. PubMed ID: 27378584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. gamma-Aminobutyric acid system in isolated dorsal and ventral horn neurons from bovine spinal cord.
    Wakabayashi M; Higa H; Kushiya E; Araki K; Takahashi Y
    Neurochem Res; 1981 Jun; 6(6):659-71. PubMed ID: 7279116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development of neurons containing choline acetyltransferase in rat spinal cord: an immunocytochemical study.
    Phelps PE; Barber RP; Houser CR; Crawford GD; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1984 Nov; 229(3):347-61. PubMed ID: 6389614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of spinal cord cell cultures with motoneurons.
    Berg DK; Fischbach GD
    J Cell Biol; 1978 Apr; 77(1):83-98. PubMed ID: 566275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential susceptibilities of spinal cord neurons to retinoic acid-induced survival and differentiation.
    Wuarin L; Sidell N
    Dev Biol; 1991 Apr; 144(2):429-35. PubMed ID: 2010040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human spinal cord neurons in dissociated monolayer cultures: morphological, biochemical, and electrophysiological properties.
    Kato AC; Touzeau G; Bertrand D; Bader CR
    J Neurosci; 1985 Oct; 5(10):2750-61. PubMed ID: 2413186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased activity of choline acetyltransferase and acetylcholinesterase in developing cultures of chick spinal cord: a correlation with morphological development.
    Kim SU; Oh TH; Johnson DD
    Neurobiology; 1975 May; 5(2):119-27. PubMed ID: 1134618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between morphological and biochemical effects of ethanol on neuroblast-enriched cultures derived from three-day-old chick embryos.
    Kentroti S; Vernadakis A
    J Neurosci Res; 1991 Nov; 30(3):484-92. PubMed ID: 1800770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.