BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36768290)

  • 1. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability.
    Al Angari YM; Almulaiky YQ; Alotaibi MM; Hussein MA; El-Shishtawy RM
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acrylic fabric and nanomaterials to enhance α-amylase-based biocatalytic immobilized systems for industrial food applications.
    El-Shishtawy RM; Al Angari YM; Alotaibi MM; Almulaiky YQ
    Int J Biol Macromol; 2023 Apr; 233():123539. PubMed ID: 36740122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polylactic Acid (PLA) Modified by Polyethylene Glycol (PEG) for the Immobilization of Lipase.
    Li S; Zhao S; Hou Y; Chen G; Chen Y; Zhang Z
    Appl Biochem Biotechnol; 2020 Mar; 190(3):982-996. PubMed ID: 31650356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.
    Dewei S; Min C; Haiming C
    Appl Biochem Biotechnol; 2016 Nov; 180(5):826-840. PubMed ID: 27188972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings.
    Çakmakçi E; Muhsir P; Demir S
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1030-1047. PubMed ID: 27704477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of cross-linked lipase aggregates onto magnetic beads for enzymatic degradation of polycaprolactone.
    Kim M; Park JM; Um HJ; Lee DH; Lee KH; Kobayashi F; Iwasaka Y; Hong CS; Min J; Kim YH
    J Basic Microbiol; 2010 Jun; 50(3):218-26. PubMed ID: 20473952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pretreatment of Candida rugosa lipase with soybean oil before immobilization on beta-cyclodextrin-based polymer.
    Ozmen EY; Yilmaz M
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):58-62. PubMed ID: 19091527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study.
    Yeşiloğlu Y; Şit L
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of insoluble yeast beta-glucan as a support for immobilization of Candida rugosa lipase.
    Vaidya BK; Singhal RS
    Colloids Surf B Biointerfaces; 2008 Jan; 61(1):101-5. PubMed ID: 17681766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustainable Immobilization of β-Glucosidase onto Silver Ions and AgNPs-Loaded Acrylic Fabric with Enhanced Stability and Reusability.
    Almulaiky YQ; Alkabli J; El-Shishtawy RM
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of chitosan/TiO2 composite beads for improving stability of porcine pancreatic lipase.
    Deveci I; Doğaç YI; Teke M; Mercimek B
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1052-68. PubMed ID: 25359676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Candida rugosa lipase on magnetic chitosan beads and application in flavor esters synthesis.
    Bayramoglu G; Celikbicak O; Kilic M; Yakup Arica M
    Food Chem; 2022 Jan; 366():130699. PubMed ID: 34348221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of Candida antarctica A and Thermomyces lanuginosus lipases on cotton terry cloth fibrils using polyethyleneimine.
    Ondul E; Dizge N; Albayrak N
    Colloids Surf B Biointerfaces; 2012 Jun; 95():109-14. PubMed ID: 22421414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of Candida antarctica Lipase B on Magnetic Poly(Urea-Urethane) Nanoparticles.
    Chiaradia V; Soares NS; Valério A; de Oliveira D; Araújo PH; Sayer C
    Appl Biochem Biotechnol; 2016 Oct; 180(3):558-575. PubMed ID: 27184256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Candida rugosa lipase and some properties of the immobilized enzyme.
    Montero S; Blanco A; Virto MD; Landeta LC; Agud I; Solozabal R; Lascaray JM; de Renobales M; Llama MJ; Serra JL
    Enzyme Microb Technol; 1993 Mar; 15(3):239-47. PubMed ID: 7763462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of lipase on porous monodisperse chitosan microspheres.
    Chen Y; Liu J; Xia C; Zhao C; Ren Z; Zhang W
    Biotechnol Appl Biochem; 2015; 62(1):101-6. PubMed ID: 24823273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Immobilization of Candida sp. lipase on resin D301].
    Wang Y; Zhu K; Liu H; Han P; Wei P
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):2036-41. PubMed ID: 20352986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of immobilization conditions of Bacillus atrophaeus FSHM2 lipase on maleic copolymer coated amine-modified graphene oxide nanosheets and its application for valeric acid esterification.
    Ameri A; Shakibaie M; Khoobi M; Faramarzi MA; Gholibegloo E; Ameri A; Forootanfar H
    Int J Biol Macromol; 2020 Nov; 162():1790-1806. PubMed ID: 32814102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of two modified layered doubled hydroxides as supports for immobilization of Candida rugosa lipase.
    Aghaei H; Ghavi M; Hashemkhani G; Keshavarz M
    Int J Biol Macromol; 2020 Nov; 162():74-83. PubMed ID: 32562729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.