BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 36768298)

  • 1. The Role of Different Types of microRNA in the Pathogenesis of Breast and Prostate Cancer.
    Sidorova EA; Zhernov YV; Antsupova MA; Khadzhieva KR; Izmailova AA; Kraskevich DA; Belova EV; Simanovsky AA; Shcherbakov DV; Zabroda NN; Mitrokhin OV
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNA-9 and breast cancer.
    Li X; Zeng Z; Wang J; Wu Y; Chen W; Zheng L; Xi T; Wang A; Lu Y
    Biomed Pharmacother; 2020 Feb; 122():109687. PubMed ID: 31918267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MicroRNAs and prostate cancer.
    Pang Y; Young CY; Yuan H
    Acta Biochim Biophys Sin (Shanghai); 2010 Jun; 42(6):363-9. PubMed ID: 20539944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TATDN1 promotes the development and progression of breast cancer by targeting microRNA-140-3p.
    Yu XY; Tian JR; Yang D; Tan HR
    Eur Rev Med Pharmacol Sci; 2019 Jun; 23(12):5293-5300. PubMed ID: 31298381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model.
    Lin Y; Chen F; Shen L; Tang X; Du C; Sun Z; Ding H; Chen J; Shen B
    J Transl Med; 2018 May; 16(1):134. PubMed ID: 29784056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of microRNA dysregulation in the development of prostate cancer.
    Massillo C; Dalton GN; Farré PL; De Luca P; De Siervi A
    Reproduction; 2017 Oct; 154(4):R81-R97. PubMed ID: 28878093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MicroRNA expression and gene regulation drive breast cancer progression and metastasis in PyMT mice.
    Nogales-Cadenas R; Cai Y; Lin JR; Zhang Q; Zhang W; Montagna C; Zhang ZD
    Breast Cancer Res; 2016 Jul; 18(1):75. PubMed ID: 27449149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells.
    Wang C; Tao W; Ni S; Chen Q; Zhao Z; Ma L; Fu Y; Jiao Z
    Cancer Sci; 2015 Apr; 106(4):375-82. PubMed ID: 25645686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. miRNAs in breast cancer tumorigenesis (Review).
    Zhang ZJ; Ma SL
    Oncol Rep; 2012 Apr; 27(4):903-10. PubMed ID: 22200848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. microRNA 338-3p exhibits tumor suppressor role and its down-regulation is associated with adverse clinical outcome in prostate cancer patients.
    Bakkar A; Alshalalfa M; Petersen LF; Abou-Ouf H; Al-Mami A; Hegazy SA; Feng F; Alhajj R; Bijian K; Alaoui-Jamali MA; Bismar TA
    Mol Biol Rep; 2016 Apr; 43(4):229-40. PubMed ID: 26907180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements.
    Schwickert A; Weghake E; Brüggemann K; Engbers A; Brinkmann BF; Kemper B; Seggewiß J; Stock C; Ebnet K; Kiesel L; Riethmüller C; Götte M
    PLoS One; 2015; 10(12):e0143993. PubMed ID: 26657485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of microRNAs during prostatic tumorigenesis and tumor progression.
    Fang YX; Gao WQ
    Oncogene; 2014 Jan; 33(2):135-47. PubMed ID: 23455326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of microRNAs in prostate cancer migration, invasion, and metastasis.
    Aghdam SG; Ebrazeh M; Hemmatzadeh M; Seyfizadeh N; Shabgah AG; Azizi G; Ebrahimi N; Babaie F; Mohammadi H
    J Cell Physiol; 2019 Jul; 234(7):9927-9942. PubMed ID: 30536403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin.
    Das DK; Naidoo M; Ilboudo A; Park JY; Ali T; Krampis K; Robinson BD; Osborne JR; Ogunwobi OO
    Exp Cell Res; 2016 Nov; 348(2):190-200. PubMed ID: 27693493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breast cancer and microRNAs: therapeutic impact.
    Iorio MV; Casalini P; Piovan C; Braccioli L; Tagliabue E
    Breast; 2011 Oct; 20 Suppl 3():S63-70. PubMed ID: 22015296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNA-1236-3p inhibits proliferation and invasion of breast cancer cells by targeting ZEB1.
    Liang TC; Fu WG; Zhong YS
    Eur Rev Med Pharmacol Sci; 2019 Nov; 23(22):9988-9995. PubMed ID: 31799668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer.
    Schubert M; Spahn M; Kneitz S; Scholz CJ; Joniau S; Stroebel P; Riedmiller H; Kneitz B
    PLoS One; 2013; 8(6):e65064. PubMed ID: 23798998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. regQTLs: Single nucleotide polymorphisms that modulate microRNA regulation of gene expression in tumors.
    Wilk G; Braun R
    PLoS Genet; 2018 Dec; 14(12):e1007837. PubMed ID: 30557297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448.
    Bamodu OA; Huang WC; Lee WH; Wu A; Wang LS; Hsiao M; Yeh CT; Chao TY
    BMC Cancer; 2016 Feb; 16():160. PubMed ID: 26917489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MicroRNA expression and function in prostate cancer: a review of current knowledge and opportunities for discovery.
    Kumar B; Lupold SE
    Asian J Androl; 2016; 18(4):559-67. PubMed ID: 27056344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.