These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36768396)

  • 1. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES.
    Toropova AP; Toropov AA; Fjodorova N
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data.
    Toropova AP; Toropov AA
    J Theor Biol; 2017 Mar; 416():113-118. PubMed ID: 28087422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-SMILES as a basis to build up models of endpoints for nanomaterials.
    Toropova AP; Toropov AA
    Environ Technol; 2023 Dec; 44(28):4460-4467. PubMed ID: 35748421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-SMILES as a basis for the development of models for the toxicity of ZnO nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2021 Jun; 772():145532. PubMed ID: 33578164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CORAL: Predictive models for cytotoxicity of functionalized nanozeolites based on quasi-SMILES.
    Leone C; Bertuzzi EE; Toropova AP; Toropov AA; Benfenati E
    Chemosphere; 2018 Nov; 210():52-56. PubMed ID: 29986223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-SMILES: Self-consistent models for toxicity of organic chemicals to tadpoles.
    Toropov AA; Di Nicola MR; Toropova AP; Roncaglioni A; Dorne JLCM; Benfenati E
    Chemosphere; 2023 Jan; 312(Pt 1):137224. PubMed ID: 36375610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CORAL and Nano-QFAR: Quantitative feature - Activity relationships (QFAR) for bioavailability of nanoparticles (ZnO, CuO, Co
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2017 May; 139():404-407. PubMed ID: 28192776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-SMILES-Based Nano-Quantitative Structure-Activity Relationship Model to Predict the Cytotoxicity of Multiwalled Carbon Nanotubes to Human Lung Cells.
    Trinh TX; Choi JS; Jeon H; Byun HG; Yoon TH; Kim J
    Chem Res Toxicol; 2018 Mar; 31(3):183-190. PubMed ID: 29439565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of quasi-SMILES to build models based on quantitative results from experiments with nanomaterials.
    Toropov AA; Kjeldsen F; Toropova AP
    Chemosphere; 2022 Sep; 303(Pt 2):135086. PubMed ID: 35618064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterials: Quasi-SMILES as a flexible basis for regulation and environmental risk assessment.
    Toropova AP; Toropov AA
    Sci Total Environ; 2022 Jun; 823():153747. PubMed ID: 35149067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. coral Software: QSAR for Anticancer Agents.
    Benfenati E; Toropov AA; Toropova AP; Manganaro A; Gonella Diaza R
    Chem Biol Drug Des; 2011 Jun; 77(6):471-6. PubMed ID: 21435183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation intensity index: mathematical modeling of cytotoxicity of metal oxide nanoparticles.
    Ahmadi S; Toropova AP; Toropov AA
    Nanotoxicology; 2020 Oct; 14(8):1118-1126. PubMed ID: 32877261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CORAL: Monte Carlo Method to Predict Endpoints for Medical Chemistry.
    Toropova AP; Toropov AA
    Mini Rev Med Chem; 2018 Feb; 18(5):382-391. PubMed ID: 28971771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-SMILES: quantitative structure-activity relationships to predict anticancer activity.
    Toropova AP; Toropov AA
    Mol Divers; 2019 May; 23(2):403-412. PubMed ID: 30306392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does the Index of Ideality of Correlation Detect the Better Model Correctly?
    Toropova AP; Toropov AA
    Mol Inform; 2019 Aug; 38(8-9):e1800157. PubMed ID: 30725522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of antimicrobial activity of large pool of peptides using quasi-SMILES.
    Toropova AP; Toropov AA; Benfenati E; Leszczynska D; Leszczynski J
    Biosystems; 2018 Jul; 169-170():5-12. PubMed ID: 29800627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method.
    Veselinović AM; Veselinović JB; Toropov AA; Toropova AP; Nikolić GM
    Int J Pharm; 2015 Nov; 495(1):404-409. PubMed ID: 26320546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions.
    Toropova AP; Toropov AA; Rallo R; Leszczynska D; Leszczynski J
    Ecotoxicol Environ Saf; 2015 Feb; 112():39-45. PubMed ID: 25463851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation intensity index: Building up models for mutagenicity of silver nanoparticles.
    Toropov AA; Toropova AP
    Sci Total Environ; 2020 Oct; 737():139720. PubMed ID: 32554036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMILES-based QSAR approaches for carcinogenicity and anticancer activity: comparison of correlation weights for identical SMILES attributes.
    Toropov AA; Toropova AP; Benfenati E; Gini G; Leszczynska D; Leszczynski J
    Anticancer Agents Med Chem; 2011 Dec; 11(10):974-82. PubMed ID: 22023046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.