BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36768540)

  • 1. DeepTP: A Deep Learning Model for Thermophilic Protein Prediction.
    Zhao J; Yan W; Yang Y
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of transport proteins from sequence information with the deep learning approach.
    Wang Q; Xu T; Xu K; Lu Z; Ying J
    Comput Biol Med; 2023 Jun; 160():106974. PubMed ID: 37167658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepPPThermo: A Deep Learning Framework for Predicting Protein Thermostability Combining Protein-Level and Amino Acid-Level Features.
    Xiang X; Gao J; Ding Y
    J Comput Biol; 2024 Feb; 31(2):147-160. PubMed ID: 38100126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. deepNEC: a novel alignment-free tool for the identification and classification of nitrogen biochemical network-related enzymes using deep learning.
    Duhan N; Norton JM; Kaundal R
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35325031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The applications of deep learning algorithms on in silico druggable proteins identification.
    Yu L; Xue L; Liu F; Li Y; Jing R; Luo J
    J Adv Res; 2022 Nov; 41():219-231. PubMed ID: 36328750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRMSNet: A deep learning model that uses convolution and residual multi-head self-attention block to predict RBPs for RNA sequence.
    Pan Z; Zhou S; Zou H; Liu C; Zang M; Liu T; Wang Q
    Proteins; 2023 Aug; 91(8):1032-1041. PubMed ID: 36935548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model.
    Ke J; Zhao J; Li H; Yuan L; Dong G; Wang G
    Comput Biol Med; 2024 May; 174():108330. PubMed ID: 38588617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-attention based recurrent convolutional neural network for disease prediction using healthcare data.
    Usama M; Ahmad B; Xiao W; Hossain MS; Muhammad G
    Comput Methods Programs Biomed; 2020 Jul; 190():105191. PubMed ID: 31753591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DCSE:Double-Channel-Siamese-Ensemble model for protein protein interaction prediction.
    Chen W; Wang S; Song T; Li X; Han P; Gao C
    BMC Genomics; 2022 Aug; 23(1):555. PubMed ID: 35922751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks.
    Gao T; Zhao Y; Zhang L; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of drug-protein interaction based on dual channel neural networks with attention mechanism.
    Tan D; Jiang H; Li H; Xie Y; Su Y
    Brief Funct Genomics; 2024 May; 23(3):286-294. PubMed ID: 37642213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble deep learning models for protein secondary structure prediction using bidirectional temporal convolution and bidirectional long short-term memory.
    Yuan L; Ma Y; Liu Y
    Front Bioeng Biotechnol; 2023; 11():1051268. PubMed ID: 36860882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Study of Two-Way Short- and Long-Term Memory Network Intelligent Computing IoT Model-Assisted Home Education Attention Mechanism.
    Ma S
    Comput Intell Neurosci; 2021; 2021():3587884. PubMed ID: 34970310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.