BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 36768566)

  • 1. Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks.
    Qin S; Li W; Yu H; Xu M; Li C; Fu L; Sun S; He Y; Lv J; He W; Chen L
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based identification of key proteins and repositioning of drugs for non-small cell lung cancer.
    Adeyemo OM; Ashimiyu-Abdusalam Z; Adewunmi M; Ayano TA; Sohaib M; Abdel-Salam R
    Cancer Rep (Hoboken); 2024 Apr; 7(4):e2031. PubMed ID: 38600056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug repositioning in non-small cell lung cancer (NSCLC) using gene co-expression and drug-gene interaction networks analysis.
    MotieGhader H; Tabrizi-Nezhadi P; Deldar Abad Paskeh M; Baradaran B; Mokhtarzadeh A; Hashemi M; Lanjanian H; Jazayeri SM; Maleki M; Khodadadi E; Nematzadeh S; Kiani F; Maghsoudloo M; Masoudi-Nejad A
    Sci Rep; 2022 Jun; 12(1):9417. PubMed ID: 35676421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug repositioning for non-small cell lung cancer by using machine learning algorithms and topological graph theory.
    Huang CH; Chang PM; Hsu CW; Huang CY; Ng KL
    BMC Bioinformatics; 2016 Jan; 17 Suppl 1(Suppl 1):2. PubMed ID: 26817825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems.
    Doumat G; Daher D; Zerdan MB; Nasra N; Bahmad HF; Recine M; Poppiti R
    Curr Oncol; 2023 Jan; 30(1):704-719. PubMed ID: 36661704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in drug repositioning for the discovery of new anticancer drugs.
    Shim JS; Liu JO
    Int J Biol Sci; 2014; 10(7):654-63. PubMed ID: 25013375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network neighborhood operates as a drug repositioning method for cancer treatment.
    Cüvitoğlu A; Isik Z
    PeerJ; 2023; 11():e15624. PubMed ID: 37456868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current progress and future perspectives of polypharmacology : From the view of non-small cell lung cancer.
    Karuppasamy R; Veerappapillai S; Maiti S; Shin WH; Kihara D
    Semin Cancer Biol; 2021 Jan; 68():84-91. PubMed ID: 31698087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks.
    Nam Y; Lucas A; Yun JS; Lee SM; Park JW; Chen Z; Lee B; Ning X; Shen L; Verma A; Kim D
    J Transl Med; 2023 Jun; 21(1):415. PubMed ID: 37365631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities.
    Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J
    Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MNBDR: A Module Network Based Method for Drug Repositioning.
    Chen HG; Zhou XH
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33375395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Novel Drugs for Hepatocellular Carcinoma Based on Multi-Source Random Walk.
    Yu L; Su R; Wang B; Zhang L; Zou Y; Zhang J; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):966-977. PubMed ID: 27076463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Potential Drugs for Breast Cancer based on miRNA and Tissue Specificity.
    Yu L; Zhao J; Gao L
    Int J Biol Sci; 2018; 14(8):971-982. PubMed ID: 29989066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting associations among drugs, targets and diseases by tensor decomposition for drug repositioning.
    Wang R; Li S; Cheng L; Wong MH; Leung KS
    BMC Bioinformatics; 2019 Dec; 20(Suppl 26):628. PubMed ID: 31839008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational drug repositioning using meta-path-based semantic network analysis.
    Tian Z; Teng Z; Cheng S; Guo M
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems biology based drug repositioning for development of cancer therapy.
    Turanli B; Altay O; Borén J; Turkez H; Nielsen J; Uhlen M; Arga KY; Mardinoglu A
    Semin Cancer Biol; 2021 Jan; 68():47-58. PubMed ID: 31568815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computationally repurposing drugs for breast cancer subtypes using a network-based approach.
    Firoozbakht F; Rezaeian I; Rueda L; Ngom A
    BMC Bioinformatics; 2022 Apr; 23(1):143. PubMed ID: 35443626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.