BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 36768613)

  • 1. Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis.
    Stadnichuk IN; Kusnetsov VV
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes.
    Luimstra VM; Schuurmans JM; de Carvalho CFM; Matthijs HCP; Hellingwerf KJ; Huisman J
    Photosynth Res; 2019 Sep; 141(3):291-301. PubMed ID: 30820745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light.
    Ho MY; Niedzwiedzki DM; MacGregor-Chatwin C; Gerstenecker G; Hunter CN; Blankenship RE; Bryant DA
    Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148064. PubMed ID: 31421078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Antenna replacement in the evolutionary origin of chloroplasts].
    Stadnichuk IN; Tropin IV
    Mikrobiologiia; 2014; 83(4):385-402. PubMed ID: 25844449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cyanobacterial Phycobilisomes and Phycobiliproteins].
    Stadnichuk IN; Krasil'nikov PM; Zlenko DV
    Mikrobiologiia; 2015; 84(2):131-43. PubMed ID: 26263619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina.
    Theiss C; Schmitt FJ; Pieper J; Nganou C; Grehn M; Vitali M; Olliges R; Eichler HJ; Eckert HJ
    J Plant Physiol; 2011 Aug; 168(12):1473-87. PubMed ID: 21396735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic investigation on the energy transfer process in photosynthetic apparatus of cyanobacteria.
    Li Y; Wang B; Ai XC; Zhang XK; Zhao JQ; Jiang LJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1543-7. PubMed ID: 15147696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive and acclimative responses of cyanobacteria to far-red light.
    Gan F; Bryant DA
    Environ Microbiol; 2015 Oct; 17(10):3450-65. PubMed ID: 26234306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variety in excitation energy transfer processes from phycobilisomes to photosystems I and II.
    Ueno Y; Aikawa S; Niwa K; Abe T; Murakami A; Kondo A; Akimoto S
    Photosynth Res; 2017 Sep; 133(1-3):235-243. PubMed ID: 28185041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural basis for light harvesting in organisms producing phycobiliproteins.
    Bryant DA; Gisriel CJ
    Plant Cell; 2024 Apr; ():. PubMed ID: 38652697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional assembly in vitro of phycobilisomes with isolated photosystem II particles of eukaryotic chloroplasts.
    Kirilovsky D; Ohad I
    J Biol Chem; 1986 Sep; 261(26):12317-23. PubMed ID: 3528156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phycoerythrin Association with Photosystem II in the Cryptophyte Alga Rhodomonas salina.
    Stadnichuk IN; Novikova TM; Miniuk GS; Boichenko VA; Bolychevtseva YV; Gusev ES; Lukashev EP
    Biochemistry (Mosc); 2020 Jun; 85(6):679-688. PubMed ID: 32586231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002.
    Dong C; Tang A; Zhao J; Mullineaux CW; Shen G; Bryant DA
    Biochim Biophys Acta; 2009 Sep; 1787(9):1122-8. PubMed ID: 19397890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the interface of light-harvesting antenna complexes and reaction centers in oxygenic photosynthesis.
    Liu H; Blankenship RE
    Biochim Biophys Acta Bioenerg; 2019 Nov; 1860(11):148079. PubMed ID: 31518567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinhibition induced alterations in energy transfer process in phycobilisomes of PS II in the cyanobacterium, Spirulina platensis.
    Kumar DP; Murthy SD
    J Biochem Mol Biol; 2007 Sep; 40(5):644-8. PubMed ID: 17927895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna.
    Kondo K; Ochiai Y; Katayama M; Ikeuchi M
    Plant Physiol; 2007 Jun; 144(2):1200-10. PubMed ID: 17468217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions.
    Chen M; Hernandez-Prieto MA; Loughlin PC; Li Y; Willows RD
    BMC Genomics; 2019 Mar; 20(1):207. PubMed ID: 30866821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview.
    Su HN; Xie BB; Zhang XY; Zhou BC; Zhang YZ
    Photosynth Res; 2010 Nov; 106(1-2):73-87. PubMed ID: 20521115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina.
    Chen M; Floetenmeyer M; Bibby TS
    FEBS Lett; 2009 Aug; 583(15):2535-9. PubMed ID: 19596002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What Happened to the Phycobilisome?
    Green BR
    Biomolecules; 2019 Nov; 9(11):. PubMed ID: 31752285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.