These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36768696)
1. Comparative Analysis of Library Preparation Approaches for SARS-CoV-2 Genome Sequencing on the Illumina MiSeq Platform. Gladkikh A; Klyuchnikova E; Pavlova P; Sbarzaglia V; Tsyganova N; Popova M; Arbuzova T; Sharova A; Ramsay E; Samoilov A; Dedkov V; Totolian A Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768696 [TBL] [Abstract][Full Text] [Related]
2. Whole-Genome Sequencing of SARS-CoV-2: Assessment of the Ion Torrent AmpliSeq Panel and Comparison with the Illumina MiSeq ARTIC Protocol. Plitnick J; Griesemer S; Lasek-Nesselquist E; Singh N; Lamson DM; St George K J Clin Microbiol; 2021 Nov; 59(12):e0064921. PubMed ID: 34550806 [TBL] [Abstract][Full Text] [Related]
3. A comparison of five Illumina, Ion Torrent, and nanopore sequencing technology-based approaches for whole genome sequencing of SARS-CoV-2. Carbo EC; Mourik K; Boers SA; Munnink BO; Nieuwenhuijse D; Jonges M; Welkers MRA; Matamoros S; van Harinxma Thoe Slooten J; Kraakman MEM; Karelioti E; van der Meer D; Veldkamp KE; Kroes ACM; Sidorov I; de Vries JJC Eur J Clin Microbiol Infect Dis; 2023 Jun; 42(6):701-713. PubMed ID: 37017810 [TBL] [Abstract][Full Text] [Related]
4. Rapid, high-throughput, cost-effective whole-genome sequencing of SARS-CoV-2 using a condensed library preparation of the Illumina DNA Prep kit. Hickman R; Nguyen J; Lee TD; Tyson JR; Azana R; Tsang F; Hoang L; Prystajecky NA J Clin Microbiol; 2024 Mar; 62(3):e0010322. PubMed ID: 38315007 [TBL] [Abstract][Full Text] [Related]
6. High Throughput SARS-CoV-2 Genome Sequencing from 384 Respiratory Samples Using the Illumina COVIDSeq Protocol. Papa Mze N; Kacel I; Beye M; Tola R; Sarr M; Basco L; Bogreau H; Colson P; Fournier PE Genes (Basel); 2023 Mar; 14(3):. PubMed ID: 36980953 [TBL] [Abstract][Full Text] [Related]
7. A Comparison of Whole Genome Sequencing of SARS-CoV-2 Using Amplicon-Based Sequencing, Random Hexamers, and Bait Capture. Nasir JA; Kozak RA; Aftanas P; Raphenya AR; Smith KM; Maguire F; Maan H; Alruwaili M; Banerjee A; Mbareche H; Alcock BP; Knox NC; Mossman K; Wang B; Hiscox JA; McArthur AG; Mubareka S Viruses; 2020 Aug; 12(8):. PubMed ID: 32824272 [TBL] [Abstract][Full Text] [Related]
8. SARS-CoV-2 Whole-Genome Sequencing by Ion S5 Technology-Challenges, Protocol Optimization and Success Rates for Different Strains. Szargut M; Cytacka S; Serwin K; Urbańska A; Gastineau R; Parczewski M; Ossowski A Viruses; 2022 Jun; 14(6):. PubMed ID: 35746701 [TBL] [Abstract][Full Text] [Related]
9. A rapid, cost-effective tailed amplicon method for sequencing SARS-CoV-2. Gohl DM; Garbe J; Grady P; Daniel J; Watson RHB; Auch B; Nelson A; Yohe S; Beckman KB BMC Genomics; 2020 Dec; 21(1):863. PubMed ID: 33276717 [TBL] [Abstract][Full Text] [Related]
10. Performance of amplicon and capture based next-generation sequencing approaches for the epidemiological surveillance of Omicron SARS-CoV-2 and other variants of concern. Daviña-Núñez C; Pérez S; Cabrera-Alvargonzález JJ; Rincón-Quintero A; Treinta-Álvarez A; Godoy-Diz M; Suárez-Luque S; Regueiro-García B PLoS One; 2024; 19(4):e0289188. PubMed ID: 38683803 [TBL] [Abstract][Full Text] [Related]
11. Mini-XT, a miniaturized tagmentation-based protocol for efficient sequencing of SARS-CoV-2. Fuchs M; Radulescu C; Tang M; Mahesh A; Lavin D; Umbreen S; McKenna J; Smyth M; McColgan E; Molnar Z; Baxter C; Skvortsov T; Singh A; Rogan F; Miskelly J; Bridgett S; Fairley D; Simpson DA J Transl Med; 2022 Mar; 20(1):105. PubMed ID: 35241105 [TBL] [Abstract][Full Text] [Related]
12. Whole-genome sequencing of SARS-CoV-2: Comparison of target capture and amplicon single molecule real-time sequencing protocols. Nicot F; Trémeaux P; Latour J; Jeanne N; Ranger N; Raymond S; Dimeglio C; Salin G; Donnadieu C; Izopet J J Med Virol; 2023 Jan; 95(1):e28123. PubMed ID: 36056719 [TBL] [Abstract][Full Text] [Related]
13. Whole-genome single molecule real-time sequencing of SARS-CoV-2 Omicron. Nicot F; Trémeaux P; Latour J; Carcenac R; Demmou S; Jeanne N; Ranger N; De Smet C; Raymond S; Dimeglio C; Izopet J J Med Virol; 2023 Feb; 95(2):e28564. PubMed ID: 36756931 [TBL] [Abstract][Full Text] [Related]
14. A benchmarking study of SARS-CoV-2 whole-genome sequencing protocols using COVID-19 patient samples. Liu T; Chen Z; Chen W; Chen X; Hosseini M; Yang Z; Li J; Ho D; Turay D; Gheorghe CP; Jones W; Wang C iScience; 2021 Aug; 24(8):102892. PubMed ID: 34308277 [TBL] [Abstract][Full Text] [Related]
15. Comparison of SARS-CoV-2 whole genome sequencing using tiled amplicon enrichment and bait hybridization. Koskela von Sydow A; Lindqvist CM; Asghar N; Johansson M; Sundqvist M; Mölling P; Stenmark B Sci Rep; 2023 Apr; 13(1):6461. PubMed ID: 37081087 [TBL] [Abstract][Full Text] [Related]
16. Assessment of two-pool multiplex long-amplicon nanopore sequencing of SARS-CoV-2. Liu H; Li J; Lin Y; Bo X; Song H; Li K; Li P; Ni M J Med Virol; 2022 Jan; 94(1):327-334. PubMed ID: 34524690 [TBL] [Abstract][Full Text] [Related]
17. Tiled-ClickSeq for targeted sequencing of complete coronavirus genomes with simultaneous capture of RNA recombination and minority variants. Jaworski E; Langsjoen RM; Mitchell B; Judy B; Newman P; Plante JA; Plante KS; Miller AL; Zhou Y; Swetnam D; Sotcheff S; Morris V; Saada N; Machado RR; McConnell A; Widen SG; Thompson J; Dong J; Ren P; Pyles RB; Ksiazek TG; Menachery VD; Weaver SC; Routh AL Elife; 2021 Sep; 10():. PubMed ID: 34581669 [TBL] [Abstract][Full Text] [Related]
18. A short plus long-amplicon based sequencing approach improves genomic coverage and variant detection in the SARS-CoV-2 genome. Arana C; Liang C; Brock M; Zhang B; Zhou J; Chen L; Cantarel B; SoRelle J; Hooper LV; Raj P PLoS One; 2022; 17(1):e0261014. PubMed ID: 35025877 [TBL] [Abstract][Full Text] [Related]
19. Development of an amplicon-based sequencing approach in response to the global emergence of mpox. Chen NFG; Chaguza C; Gagne L; Doucette M; Smole S; Buzby E; Hall J; Ash S; Harrington R; Cofsky S; Clancy S; Kapsak CJ; Sevinsky J; Libuit K; Park DJ; Hemarajata P; Garrigues JM; Green NM; Sierra-Patev S; Carpenter-Azevedo K; Huard RC; Pearson C; Incekara K; Nishimura C; Huang JP; Gagnon E; Reever E; Razeq J; Muyombwe A; Borges V; Ferreira R; Sobral D; Duarte S; Santos D; Vieira L; Gomes JP; Aquino C; Savino IM; Felton K; Bajwa M; Hayward N; Miller H; Naumann A; Allman R; Greer N; Fall A; Mostafa HH; McHugh MP; Maloney DM; Dewar R; Kenicer J; Parker A; Mathers K; Wild J; Cotton S; Templeton KE; Churchwell G; Lee PA; Pedrosa M; McGruder B; Schmedes S; Plumb MR; Wang X; Barcellos RB; Godinho FMS; Salvato RS; Ceniseros A; Breban MI; Grubaugh ND; Gallagher GR; Vogels CBF PLoS Biol; 2023 Jun; 21(6):e3002151. PubMed ID: 37310918 [TBL] [Abstract][Full Text] [Related]
20. Receptor-Binding-Motif-Targeted Sanger Sequencing: a Quick and Cost-Effective Strategy for Molecular Surveillance of SARS-CoV-2 Variants. Chaki SP; Kahl-McDonagh MM; Neuman BW; Zuelke KA Microbiol Spectr; 2022 Jun; 10(3):e0066522. PubMed ID: 35638906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]